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-layered plate containing a through crack under tension. ( see Figure 2.2 ¢ )
( Materials I and Il are isotropic, with vy;= 0.5 and v3 = 0.2,
and E;/ E, = 3.0, E3/ E, =10.;
Material Il is “as if” isotropic, with E, and v,= 0.,
and Gyz = Gyz = 3 Gxy )
(Z=z+4+cy,kg=o0¢Na, o= N%®/h )
(a/h = 0.5, hy/hy, = 0.2, hy/h, = 0.2)

Figure 2.30 Normalized stress intensity factor distribution in a 3-unsymmetrically
-layered plate containing a through crack under bending. ( see Figure 2.2 ¢ )
( Materials T and III are isotropic, with v;= 0.5 and v3 = 0.2,
and E,/ E, = 3.0, E3/ E, = 10.;
Material II is “as if”* isotropic, with E, and v,= 0.,

and Gxz = Gyz = 3 Gxy )

(z2=1z+cg, k=0, @, 0, =6M>P/h?)
(a/h = 0.5, hy/h, = 0.2, hy/h, =0.2)
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Abstract

The main objective of this study is to develop an analytical method for a
relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic
plate containing a through or a part-through crack. The laminated plate is assumed

to be under bending or membrane loading and the mode I problem is considered.

First three transverse shear deformation plate theories (Mindlin’s displacement
based first-order theory, Reissner’s stress-based first-order theory and a simple-higher
order theory due to Reddy) are reviewed and examined for homogeneous, laminated
and heterogeneous orthotropic plates. Then based on a general linear laminated plate
theory, a method by which the stress intensity factors can be obtained in orthotropic
laminated and heterogeneous plates with a through crack is developed. Examples are
given for both symmetrically and unsymmetrically laminated plates and the effect of

various material properties on the stress intensity factors are studied.

In order to implement the line-spring model which is used later to study the
surface crack problem, the corresponding plane elasticity problem of a two-bonded
orthotropic plate containing a crack perpendicular to the interface is also considered.
Three different crack profiles: an internal crack, an edge crack and a crack
terminating at the interface are considered. The effect of the different material
combinations, geometries and material orthotropy on the stress intensity factors and
on the power of stress singularity for a crack terminating at the interface is fully

examined.

The Line Spring model of Rice and Levy is used for the part-through crack
problem. The surface crack is assumed to lie in one of the two-layered laminated
orthotropic plates due to the limitation of the available plane strain results. Rather
extensive numerical results are given for both laminated composite and bonded metal-
ceramic structural materials with various geometrical configurations. These results
will be useful in brittle fracture analysis and more importantly, in subcritical crack
growth studies.

All problems considered in this study are of the mixed boundary value type and
are teduced to Cauchy type of singular integral equations which are then solved

numerically.



Chapter 1. Transverse Shear Deformation Theories

1.1 INTRODUCTION

In recent years the potential of laminated composite materials for use as
structural members has inspired considerable research activity in the study of the
response of anisotropic laminated media. Because of the complicated internal
structure of composites the stress field in the system is truly three-dimensional in
character. One possible means of simplifying the three-dimensional equations of
elasticity is to use the concept adopted in the formulation of plate theories. By
following this approach various theories have been developed to treat the mechanical
response of composite laminates. For example, classical laminated plate theory, which
is an extension of the classical plate theory to laminated plates, was discussed by
Lekhnitskii [1] by employing the Kirchhoff hypothesis in the analysis of symmetrical
laminates. However, the classical laminate theory is inadequate for laminated plates
made of advanced filamentary composite materials because most of these advanced
composites have a low ratio of the transverse shear modulus to the in-plane modulus.
Moreover, when we study the problem of a cracked plate under general loading
conditions, the classical theory gives the following asymptotic results for the stress

resultant distributions around the crack tip

Ny = J%r [k, ',1(0) + ky'52(0)]

Mij = _‘I% [ klbgijl(a,V) + kzbguz(ﬁ,v)] ,
vV, ~ L k3hg,(0,v), (ij=1,2),

i = 372
r (1.1a)

whereas an appropriate transverse shear deformation theory ( such as that of

Reissner’s or Mindlin’s ) provides the corresponding fields as follows:



Z
12

i = 7 [0 4 1700,

=
R

ﬁ [ klbfijl(g) + kzbfijz(e)] ’

V, > = k3f3(8), (ij =1,2), (1.1b)
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where Ny, M; and V,; are respectively membrane, bending and transverse shear

i
components of the stress resultants, k;, k, and kg are respectively the modes I, 11,
and III stress intensity factors, r and # are the local polar coordinats in x,x, plane,
and the angular expressions fi-l, fU2 and fi3 are identical to the results given by the
continuum elasticity solutions of crack problems [ 2] and [ 3 ].

Expressions (1.1a) clearly show that the solutions regarding the bending and
transverse shear stress states at the crack tip given by classical theory do not conform
to the standard results obtained from the elasticity solutions. That is, the angular
distributions for Mij and V,; differ from the expected elasticity results and are
dependent on the Poisson’s ratio, and the 3/2 singularity given for V; is physically
unacceptable. Furthermore, because of these discrepencies, the critical fracture
mechanics parameters klb, k2b and k; obtained from the classical theory are bound to
be inaccurate. These inconsistencies are perhaps due to the fact that the classical
theory can accommodate only two boundary conditions on the crack surface, namely
the normal component of the bending moment and the Kirchhoff’s effective transverse
shear resultant combining the twisting moment and the transverse shear resultant,
and it is likely to be inaccurate in the region of primary interest near the crack tip.
All these shortcomings are seem to be removed when a transverse shear deformation

theory is used.

Currently two groups of shear deformation plate theories are known in the
literature: ( 1 ) stress-based theories and ( 2 ) displacement-based theories. The first
stress-based shear deformation plate theory is due to Reissner [ 4 ], [ 5 ] and is based
on a linear distribution of the in-plane normal and shear stresses through the
thickness. The origin of displacement-based theories is attributed to Basset [ 6 ], and
Hildebrand & Reissner & Thomas [ 7 ]. These first-order shear deformation theories

assumed the following displacement field



y(xyz)=u(xy)+zex(%y),
uz(x,y,z):v(x,y)_+z1/,-y(x,y),

u (x,y,z2)=w(x,y). (1.2)

The shear deformation theory based on equation ( 1.2 ) for plate is often
referred to as the Mindlin plate theory [ 8 ]. Analogous to the approaches, which are
based on introducing a priori plausible assumptions regarding the variation of
displacement, strain and/ or stresses in the thickness direction, Yang, Norris and
Stavsky [ 9 ] presented a generalization of Mindlin’s first order shear deformation
plate theories for anisotropic plates. In Mindlin type of first-order theory a correction
factor has to be introduced to account for the fact that it predicts a uniform shear
stress through the thickness of the plate, which is obviously incorrect for most of

cases.

For a more realistic evaluation of the stress fields and the shear stresses, high-
order shear deformation theories have been proposed [ 10 |. These high-order theories
are cumbersome and computationally more demanding, because with each additional
power of the thickness coordinate, an additional dependent unknowns is introduced
into the theory. Recently Reddy [ 11 ] has extended the Levinson simple-high-order
[ 12 ] approach of homogeneous isotropic plates to the laminated anisotropic
composite plates. This simple-high-order laminated plate theory not only accounts for
the parabolic variation of the transverse shear strains through the thickness, but also

contains the same 5 dependent unknowns as in the first order theories.

These three above mentioned transverse shear deformation theories
( Reissner’s, Mindlin’s and Reddy’s ) are reviewed and examined in this chapter. For
each approach the basic assumptions, strain and stress fields, the plate constitutive
equations and governing equations are examined. In addition, the controversies that
definitely exist in the plate theory approach are explored. Homogeneous plate theories
are studied first, then follows the extension to the laminated plate theories. Here, the
laminated plate theories are the so-called single-layer laminate theories which are
based on replacing the laminated plate by an equivalent single-layer anisotropic plate
and introducing global displacement, strain and/or stress approximations in the
thickness direction. It has been shown that these single-layer laminate theories, even

the first-order theory, are adequate in representing global behavior, such as deflections
4



and stresses, of thin composites. If the local effects, such as interlaminar stress'
distributions, delaminations on fiber/matrix interface, etc, are to be studied one then
has to consider the so-called multi-layer laminate theories, which are based on
piecewise stress/ displacement approximations in the thickness direction. Here only

single-layer laminate theories are studied.



1.2 TRANSVERSE SHEAR DEFORMATION PLATE THEORIES
----------- HOMOGENEOUS ISOTROPIC PLATE

In this section the plate under consideration is assumed to be a thin elastic
homogeneous isotropic plate of thickness h. The origin of a Cartesian coordinate
system is located within the midplane ( x, y ) with the z axis being normal to this
plane. As in the standard plate theory, it is also assumed that the plate surfaces z =

+ h/2 are subjected to surface traction defined by

VXZ(XaYa:th/Q):Oa

O'yz(x,y,:!:h/Q):O, (1-33)

and
UZ(X$y’+h/2)='Q19

UZ(X7Y1'h/2)=‘q2a (13b)

where q; and g, can be arbitrary functions of x and y.

The stress and moment resultants, each per umnit length, are defined in the

usual way, i.e.
+h/2

( Qx» Qy ) = J ( oxz, Uyz) dz,
. ~h/2
+h/2
( Mx, My, Mxy ) = J’ ( Ty, O'y, axy ) 2 dZ. ( 1-4 )
—-h/2

Because linear homogeneous plate bending theory is used, the in-plane stress
resultants Ny, Ny and Nyy, which are uncoupled with the bending resultant

components, are not presented here.

Based on the above general assumptions, three different plate bending theories

are discussed in detail in the following subsections.



1.2.1 Mindlin’s Displacement Based First-order Plate Theory

1.2.1.1 The Assumed Displacement Field

In Mindlin’s plate theory, the primary assumptions are based on the
displacement fields [ 8 ], which, in the absence of the time parameter t, are described

as follows:

u(xy,z)=z¥%(%y),
V(X,y,z)':z'py(an)a

w(x,y,z):w(x,y). (15)

Notice u and v are linear functions of z and w is independent of z. Here the three plate
displacement components 1y, ¥y and w are the unknown functions. Because of the

linear features of u and v, this theory is referred to as the first order theory.

1.2.1.2 The Strain Field

Using standard linear elasticity approach, the strain field can be obtained from

(1.5) as

o= D=y B,

& = g;zza—a‘_f},

'ny=—g§l(‘+—g—:;‘= (66;5,( %)» (1.6)
7xz=—%%+-%%=¢x+—%%,
7yz:%‘z'—+%‘y9-=¢y+%;’-,

e2=0 (1.7)



We can see that by using assumption ( 1.5 ) the in-plane strains are linear
functions of z while the out-of-plane strains are constants through the thickness of the

plate. Normal strain ¢; is neglected.

1.2.1.3 Constitutive Equations

For the thin plate, we assume the transverse normal stress may be neglected
in comparison with the other stress components. Then the constitutive equations for

the homogeneous isotropic plate can be obtained as follows:

exz—%z—(o'x—l/ay),

fy—%('l’dx"'ay),

'sz:‘%"’yz, 'sz:‘“(lj"’xz, ‘ny=—(1;"xyv (1-8)
— E

=T et

— E

vETLE (v tve)

UyzzG'sz, oxz = G 1xz , O'xy=G7xy- (1-9)

1.2.1.4 The Stress Field

( a ) Obtaining the stress fields from the constitutive equations

The general constitutive equations assume the linear strain-stress relationship.
Considering expressions ( 1.6 ), ( 1.7 ) and (1.9 ) the stress field in the plate may be

expressed as

4]
=2 () (B 4v ) =a(xy)e




< 9y i)
=2 (—Eg) (G v ) = (xy)

F1px

Ox , O¥y
dy

oxy =2 G ( + ax)=c3(x,y)z (1.10)

oxz =G (¥x + %‘):C4(X,Y)

oyz= G (¥y+ G&)=cs (%) (1.11)

wherec; (i=1,5 ) are functions of x and y only.

Again, the in-plane stresses are linear functions of z and the out-of-plane
stresses are constant through the thickness direction. Expressions ( 1.11 ) obviously

violate the boundary conditions ( 1.3 a ).

( b ) Obtaining stress field from the equilibrium equations :

Here the in-plane normal and shear stresses are the same as expressed in
( 1.10 ) but, we use a different approach, an equilibrium equation approach, to

express the out-of-plane shear stresses. From the standard equilibrium equations in

elasticity

Box | 9oxy | Ooxz

Ty T -0 (112)
we have

Ooxz __ dox Goxy

8z_—(8x+8y)' (1.13)

Integrating ( 1.12 ) and using the expressions ( 1.10 ) we find



z

= Joxz _[ 8oy , 9oxy
7 %¥) = J—h/Z 5a 97 _J—h/z- (5 +—5y—)dz
: 5(:1 6 C3
= - (5= 4+ 5= )zdz. 1.14
[, (@) (114)

It can easily be seen that o,, has the term of 22 , 1. e.

Oxz & 224..... » (115a)

Tyz X 22 4 ceoene (1.15b)

Comparing ( 1.11 ) with ( 1.15 ), it is clear that in Mindlin’s plate theory there is an

inherent inconsistency regarding the stress field.

1.2.1.5 Plate Constitutive Equations

Substituting ( 1.6 ) and ( 1.7 ) into equations ( 1.9 ) and performing the
integration from ( - h/2 ) to ( + h/2 ), the following equations are obtained between

the moment resultants to the plate-displacement components:

MX 1 v O kx
My |=D v 1 0 ky , (1.16)
where
E L3
D=—uw>=2" - 1.17
12(1-0?) ( )
and
kx_a'll)x,ky_awy 6¢x ad))’
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and

Q=KGh( ¥+ G£),

Qyzxch(¢y+g—;’). (1.18)

Notice that a parameter K has been introduced into the expressions for the transverse
shear resultants. Here the constant, K, commonly known as a correction factor, is
used to account for the fact that the transverse shear stresses are constant through
the thickness of the plate. By comparing to the exact theory various values of K has
been used for homogeneous isotropic plates. For example Reissner [ 4], Mindlin [ 13 ],
and Uflyand [ 14 ] used values of 5/6, 12/12, and 3/2 respectively. The evaluation of
K in a specific problem depends on either the exact elasticity solution of the problem

or experimental evidence.

1.2.1.6 Governing Equations:

As in the standard plate theory, the stress resultants must satisfy the

equilibrium equations:

OMy . OMyy _
ox oy Qx=0,

oy Tax W=D

0Qx |, 99y _
2+ e =0 (1.19)

Substituting ( 1.16 ), ( 1. 18 ) into ( 1. 19 ) the governing equations can be obtained

as

11



L;(W, kk? % ki ¥y, kk;lbx,k; V’y'kk; ¢y,k; If)x;'f)y):oa
i=(1,2,3), k=(xy5). (1.20)

Under proper boundary conditions, the unknown functions w, ¥y and ¥y could be

solved for various specific problems.

1.2.2 Reissner’s Stress Based First-order Plate Theory

1.2.2.1 The Assumed Stress Field

Reissner’s plate theory is based on a linear distribution of the in-plane normal

and shear stresses through the thickness:

oo My 4
*7 hw26 h/2°
My z

(1.21)

The distribution of the transverse normal and shear stresses is determined from the

equilibrium equations of the elasticity theory:

Oox 3°'xz —

aaxy
ox toy T 8z

aaxy 30’y aayz
Ox + + Bz 0,

30’,(2 a”yz 30'7_
Bt gt g2 =0, (1.22)

12



Integrating equations ( 1.22 ) and using the boundary conditions, following ( 1.21 )

and the plate equilibrium equations ( 1.19 ) we can derive the expressions oxz as

follows:
CRR IV LD L A
= L. B
= «[_1/2 h3712 i
oxz = SR [1-(2)2). (123 a)

Similarly the transverse stress oyz; and the normal stress ¢, can be obtained in term

of their resultants and the coordinate z

o =g [1- ()2, (123b)
and

e 3R e (P
where q = qq - q5 - (124 a,b)

From expressions ( 1.21 ), it can be seen that in-plane normal and shear stress are
linearly distributed through the thickness, which is the same as in Mindlin’s theory
( see expressions ( 1.10 )). Because of this in literature both of these theories are often
called Mindlin-Ressiner’s first-order plate theory. On the other hand, in Reissner’s
theory the transverse shear stresses, obtained from the equilibrium equations, are
parabolicly distributed through the thickness. Therefore the boundary conditions at
top and bottom of the plate [ see ( 1.3 a ) ] are satisfied.

13



1.2.2.2 The Strain Field

Assuming an isotropic material and the displacements u, v and w of any point
in the plate to be small as compared with its thickness h, we use the following general

stress-strain relations:

€x = a—xz—%[ax-u(ay—{—az)],

v=gr=—tloy-v(oxt )],
7xy=g§+ %z‘lﬁ"xy’ 7(1'25)
re= P+ E=-Lo,,
7yz=g§+ %5="1G—”yz’ (1.26)
cz=g_°;=—1§[az-u(ax+ay)]. (1.27)
Notice that, for the case q = 0, the in-plane normal and shear stress are linear

function of z, which is again the same as those in Mindlin’s theory. However, as
expressed in ( 1.26 ) and following ( 1.23 ) the transverse shear strains have the form

of a22+ b.

1.2.2.3 The Displacement Field

Substituting ( 1.21 ) into ( 1.25 ), letting q = 0 and performing the
integrations we can easily see that the in-plane displacements u and v are linearly
distributed through the thickness, which again are same as the expressions in
Mindlin’s theory. Unlike the assumption that the plate deflection w is constant
throughout the thickness of the plate in Mindlin’s theory, the expression for w in
Reissner’s theory has an inconsistency. Using the sixth relationship in the stress-strain

relation

14



g—‘;:—%[az-v(ax—l—oy)] (1.27)
for ¢ = 0, and the linear law for the distribution of the stresses ox and oy, w will

have the term of z2. Note that the same conclusion can be drawn from the expression
( 1.26 ). However in Reissner’s original article [ 4 ], he stated that to be consistent
with the assumption of linear bending stress distribution it is assumed that the
displacement u and v vary linearly over the thickness of the plate and that w does not
vary over the thickness of the plate. To overcome this inconsistency, some authors
later ( for example [ 15 ] ) have introduced some average value @ of the transverse
displacement, taken over the thickness of the plate, and then arrived at the governing
equations in terms of this average value of @ . In this way instead of finding the
actual distribution of w ( X, y, z ), somehow the average value w as a function of x

and y is sought.

1.2.2.4 Plate Constitutive Equations

Following [ 15 ], introducing some average value w of the transverse
displacement, taken over the thickness of the plate, as well as some average values ¥y
and ¥y of the rotation of the sections x = constant and y = constant respectively,
and defining these quantities by equating the work of the resultant couples on the
average rotations and the work of resultant forces on the average displacement to the
work of the corresponding stresses on the actual displacements ug (x¥,2), vo(x

¥,z ) and wg (X, ¥,z ) in the same section, we find

+h/2 +h/2
J Ox Uo dZ = Mx '¢'x 3 J O'y VO dz == My TI)y 5
~h/2 —h/2
+h/2 +h/2
J‘ O'xy VO dZ = Mxy wy 3 I ny uo dZ = Mxy ";bx b
-h/2 ~h/2
+h/2 +h/2
J Oxz wo dZ = Qx (7% J Uyz wO dz = Qy W .
-h/2 ~hj/2
(1.28)
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Now substituting expressions ( 1.21 ) for the stresses into equations ( 1.28 } the

following relations between the average and actual displacement can be obtained

3 +h/2 9 2
W= " wo[1- (4% ) )dz,
2h J—h/2 0 h
19 +h/2
Y = 5 J —2 z dz s
W2 J_u, B
+h/2
12 Yo :
Y h? Jape B
Using the stress-strain relations ( 1.25 ), for ¢ = 0, we can express the in-plane

stresses components ox, oy and oy in terms of the actual displacements as follows:

Ux=1_V2 —5—)(-+Vw),
-_E ovg , , 0o
vETLE O e )

dug  Ovg Oug = Ovg

axy=G(W+—3—;)='—2—(%§‘( W'{"g;)' (1.30)

Substituting ( 1.30 ) into ( 1.21 ), multiplying by —11;%— z dz, integrating between

z = - h/2 and z = h/2, and observing relations { 1.29 ), we arrive at the expressions
M, 1 v 0 ky
My |=D v 1 0 ky |,
Myy 0 0 (1-v)/2 kyy
where
_ E h3
12(1-02)"°

16



and

(1.31)

In like manner, substituting expressions ( 1.23 ) into ( 1.26 ), multiplying the result
by —S’T [1-¢( —2}%— )2 ] dz , and integrating between the limits z = + h/2 , we

obtain:

ow_
Qx 5 _EM Yxtgy ~

- 12 14 v -

ow_
¢X+6x

25
2 Gh pe

(1.32)

Reissner, in his treatment of this subject, makes use of Castigliano’s principle of least

work to obtain the above expressions ( 1.31 ) and ( 1.32).

Comparing the plate constitutive equations ( 1.31 ) and ( 1.32 ) from
Reissner’s theory with ( 1.16 ) and ( 1.18 ) from Mindlin’s theory we can see that for
the bending moments’ expressions, the two theories are exactly the same, whereas for
the transverse shear resultants, if we let K = 5/6 in Mindlin’s expressions, we arrive

at the identical expressions of Reissner’s expressions.

1.2.2.5 Governing Equations

Using the same equilibrium equations for stress resultants, for g = 0, we have

OMy | OMyy _
Tx + By Qx=0,

oy T ax  w=0

17



Now substituting ( 1.32 ) into ( 1.31 ), eliminating the quantities ¢y and ¥y from

these equations, and taking into account the last equation of ( 1.33 ), we obtain

2 2 2 g
Ma=-D( TE 4 ngH“hs— i

§%w 82w h? 9Qy
My=-D == L A =
y ( + v W ) + 5 ay

3y2
2 2 7]
Mo = (10D i O B e

Substituting these expressions in ( 1.34 ) into the first two equations of ( 1.33 ), the

following results can be obtained

2 (Vv
Q- 22 v2q=-p 27D
2 (Vv
Q, - b5 v?q, = p 24T (135)

Observing the expressions ( 1.34 ) and ( 1.35 ), for the particular case of h — 0, that
is, of infinitely thin plates, the foregoing set of five equations gives the corresponding

expressions in classical bending theory.

Introducing a new stress function &, after some manipulations ( see [ 15 ] for
details ) the more convenient form for the governing equations can be obtained as

follows

viw=0,

v2<1>-—1i1%—<1>=o, (1.36)

where
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_ 6 (Vw) L)
QX—'D 3)( +8X,

_ 0 (Vw) 9%
Q =-D—45 + 5 (1.37)

From equations ( 1.34 ) the expressions for My, My and M,y can be obtained. For
given boundary conditions, the plate bending problem can be solved for various

specific case.

1.2.3 A Simple Higher-order plate theory

1.2.3.1 The Assumed Displacement Field

In this simple higher-order plate theory, the primary assumptions based on

the displacement field [ 11] in absence of the time parameter t, are the following;:

u(x,y,z)=z2¢(%y)+2° (%),

V(X,Yaz)zz’a/)y(X»Y)+22¢y(xa)’)a

w(x,y,2)=w(xy). (1.38)

As we can see in the sequel, these assumptions allow for the nonuniform shear stresses
in the thickness direction of the plate, as well as the possibility of satisfying shear-free

boundary conditions ( 1.3 a ) on the surface of the plate at z = & h/2.
Observing the boundary conditions
UXZ(staih/Q)ZOa

oyz (X, ¥, +h/2)=0. , (1.3a)

for an isotropic plate and possibly for an orthotropic plate, these conditions are
equivalent to the requirement that the corresponding strains are zero on these

surfaces. Then, we have

19



7XZ(X’yaih/2)=O’

7yz(x,Y:ih/2)=0' (1.39)

From the strain-displacement relations and expressions ( 1.38 ) we find

_(9w =¢x+322¢x+ __00) 3

Txz 0z 8x

I
+
D
s

_ Ov dw

7yz——8;'+w-_;¢x+3zz¢y+%- ' (1.40)

Thus using ( 1.2 } or ( 1.39 ), we obtain

¢x=‘ (¢x+%€")a

4

3 h?
___4 Jw

b=y (o + G2 (141)

Then, the displacements in equation { 1.38 ) become

2
u-_—z[ifﬁx‘%%(‘l)x'}'g: )1,
vez[dy - A2 (g 4+ 22
TURTY 3 2 Y ey

w=w(xy). (1.42)

These are the lowest order expressions antisymmetric in z which can be made to
satisfy the shear-free conditions on z = * h/2. Also notice that there are still three

unknown functions, ¥y, ¥y and w.

1.2.3.2 The Strain Field

Introducing the following notation for convenience
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ke = S @)= A (G B,
k=, K = A (S + Ly,
ky = 5 W, ke® = A e Loy,
ke = ¥x + G2, ke = - (et G2,
kyz = ¢y + g_;" kyz(z)z'—fl—g("y+ 8_;:_)
(1.43)

The stain field associated with the displacement given by equations ( 1.42 ) is found

to be

= 7z (ke + 22 kel ),

=

ey = z( ky + z2ky ).

ez =0,

yey = 2z (kxy + 2° kxy(z) ); (1.44)
Txz = kxz + 22 kxz(z) ,

Tz = kyz + 2 kyz(z) . (1.45)

From the above expressions we can see that the in-plane strain will have the term of

z° while the out-of plane strains will have the term of z°.
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1.2.3.3 The Stress Field

As in Mindlin’s theory, there are also inherent contradictions in the transverse
stress expressions in this displacement based theory. If we use constitutive equation
( 1.9 ) to obtain the stress field, the transverse stresses oyx; and oy, will have the term
of z3, the same order as vyyx; and 7yz. On the other hand, if we use equilibrium
equation from elasticity in deriving the oy, and oy;, observing that the in-plane

stresses have the term of z3, we would have a quadratic expressions of ox; and oy;.

1.2.3.4 Plate Constitutive Equations

Substituting expressions ( 1.44 ) into equation ( 1.9 ) and performing the
integration from z = -h/2 to z = 4 h/2, the following equations are obtained

between the moment resultants and the plate - displacement components:

{Cm}=[CDI{C}, (1.46 )

where

D vD 0 D, vD, 0
CD = vD D 0 vD, D, 0 ,
0 0 D (1-v)/2 0 0 D,(1-v)/2
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3 5
p= —EB D = —EBb (147)
12(1-12) 80 (1-42)

In like manner, substituting expressions ( 1.45 ) into equations ( 1.9 ) performing the

same integration, we arrive at the expressions:

kXZ

Qx 1 0 n212 o | | ke
=Gh | 2 2)

Qy 0 1 o w212 | |k,
2
ke @

(1.48)

Notice that, due to the high - order terms introduced in the displacement field, as
expected there are more terms involved in this plate constitutive equation, which

differs greatly from the first-order theory.

1.2.3.5 Governing Equations

Using the standard plate theory approach, the stress resultants must satisfy

the equilibrium equations as expressed before

9Qx Qv _ (1.49)

Substituting ( 1.47 ) and ( 1.48 ) into the above equations, the governing equations

can be obtained for w, ¥x and ¥y.
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1.3 TRANSVERSE SHEAR DEFORMATION PLATE THEORIES
----- LAMINATED OR HETEROGENEOUS ORTHOTROPIC PLATE

In the last section, three transverse shear deformation plate theories are
studied for homogeneous isotropic plates. In this section these theories will be
extended to deal with plates that are non-homogeneous in the thickness direction. The

non-homogeneity of the plate may be of two types

(a ) the elastic moduli vary continuously in the thickness direction of the so

called “ heterogeneous plate”;

( b ) thin homogeneous layers of different elastic properties are assembled to

form a “laminated plate” in which the moduli are piecewise constant.

It will be shown that these two types of nonhomogeneous plate problems could be
solved in basically the same manner as the so called “single layer laminated plate
theory”. In the case of a nonhomogeneous plate, the stiffness matrix is derived by
continuous integration through the thickness for a heterogeneous plate and by
stepwise integration for a laminated plate. In this study only laminated plates will be

considered. The technique could easily be extended to heterogenous plates.

The laminated plate under consideration consists of an arbitrary number of
thin bonded orthotropic layers, with a total thickness h. In the “single-layer”
laminated plate theory we assume the individual lamina is elastic and the laminae are
perfectly bonded along interfaces. Cartesian coordinate system is used with the z = 0
and z = h referred to lower and upper surfaces of the plate and cylindrical boundaries
fp( X,y ) = 0 are defined by plane curves parallel to the x-y plane. As before, the top
and bottom surfaces of the plate are assumed to be free of shear stresses but

subjected to transverse normal stress, as follows:

sz(x,y,0)=0, sz(X,Yyh):O’
oyz (x,y,0)=0, oyz (x,y,h)=0; (1.50 )
Uz(X,Ya0)=O: UZ(xvysz)‘_-pZ' (151)
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Note that the lower surface of the plate is chosen as z = 0 plane which is call
“reference plane”. For a symmetrical laminated plate, for convenience, we usually
choose the symmetry plane, the midplane, as the reference plane. However, for
unsymmetrical laminated plate any plane parallel to the plate can be chosen as the
reference plane ( in practice the lower surface, the upper surface or the neutral plane
of the plate ). we choose z = 0 as reference plane because it is a general form for both

laminated plate and heterogeneous plate.

It will also be shown in this section that the asymmetry in composition and
geometry will introduce a coupling phenomenon between bending and stretching
which was studied by Reissner and Stavsky [ 16 ] and [ 17 ] in conjunction with the
classical bending theory. By assuming the symmetrical laminates the bending and
stretching problem can be decoupled whereas the problem of unsymmetrical laminates
are inherently coupled. In this section only two displacement based transverse shear
deformation theories are studied for the laminated orthotropic plate. Because of the
inconsistency in the displacement field, the Reissner’s stress based plate theory will

not be considered.

1.3.1 A General Linear Laminated or Heterogeneous Plate Theory
---------- An Extended Mindlin’s Approach

1.3.1.1 The Assumed Displacement Field

The general linear laminated plate theory is attributed to Yang, Norris and
Stavsky [ 9 ] who extended Mindlin’s theory for homogeneous plate [ 8 ] to laminates
consisting of an arbitrary number of bonded anisotropic layers and to heterogeneous

plates. The assumed displacement field is:
u(x»y’z)=u0(x’Y)+z¢x(an),
v(xy,z)=vo(xy)+zey(xy),

‘“‘(X,y,z)=w(x,Y), (0<Z<h),

(1.52)
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where u, v, and w are the displacement components in the x, y and z directions,
respectively, and uy and v are the displacement components in x and y directions of
reference plane ( i.e. z = 0 plane ). Note that these relations involve combined action
of bending and extension which characterizes the general behavior of laminated and
heterogeneous plates shown by Reissner and Stavsky [ 16 ], [ 17 ]. Comparing to the
corresponding equations for a homogeneous plate, we can see that instead of three
plate - displacement components here we have all five components ug, vy, ¥x, ¥y and

w as the unknown functions.

1.3.1.2 The Strain Field

Again, using the standard linear elasticity approach, the strain field can be

obtained from ( 1.52 ) as follows:

_ 3 i Jug | 9vg Ay Oy | _
=Gyt = Ty e 2Oy o) T e F ke
(1.53)
7XZ:‘%‘1?+ a_wx=¢x+'éaix'=7xzoa
'sz:'a_vz'+ %“'Jy_=¢y+6a—wy=7y20’
ez=0, (1.54)
where
du v u v
txo = 8)2 ) ¢yo = 3; s Txyo = 63 + a)? » (1.55)
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kx — awx ky _ 811’ — % 61/))’

= Ix = By ° by = 5t &

( 1.56)

Besides the coupling characteristics the strain field has the same features as in the

homogenous case.

1.3.1.3 Constitutive Equations for Any Layer

Assuming the generalized Hooke’s law for the stress - strain relations, the

constitutive relations of orthotropic materials for any layer are given by:

{Z}y=I[CE]J {2}, (157 a)

where

i Cll Cl2 C13 0 0 0 ]
Cy, Cys Cy3 0 0 0
Csi C3p Caz 0 0 0
CE = 0 0 0 Cusq 0 0
0 0 0 Css 0
0 0 0 0 0 Ces
| Ox ] [ €x ]
Oy €y
5 - oy ’ 0 - €2 ’
Oyz Tyz
Oxz Txz
Oxy Txy

(157b)
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Observing that Cij = Cji , there are only 9 independent constants. For a

heterogeneous plate, these 9 elastic coefficients < could be specified as functions of z
but do not vary in the x, y directions. Following [ 18 ], for future convenience, we
now employ a contracted notation to put the constitutive equation ( 1.57 ) into the

form:

(i,j=1,2,3), (1.58)

where

0'1=ax, 02=O'y, U3=Uz,

and the engineering strain €; are defined in an analogous manner. For the equation
corresponding to i = 3 we then solve for ¢; and resubstitute it into equation ( 1.58 ),

the results will be

G .
aizQia€a+—C;—z-a3, (i=1,2,3), (a=1,2), (1.59)

where
Cis
Cs3

Qia = Ciq - Ciq - ( 1.60 )

The form of the constitutive relations given by equations ( 1.59 ) will be used in
subsequent work. Integrals involving o3 will be dropped because for the thin plate in

comparison with the other stress components o, may be neglected.

Again as addressed in the subsection ( 2.1.4 ) the inconsistency for transverse

shear stresses is still there.

1.3.1.4 Plate Constitutive Equations

The plate stress resultants and stress couples are defined as follows:

(nyNy’ny)=J}8 (UXaUyany)dz, (1.61)
(Qx’Qy)zjz(sz,Uyz)dzv (1.62)
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h
( Mx, R/Iy, h{xy ) = JO ( Txy Uy, ny ) Z dZ . ( 1. 63 )

Substituting ( 1.53 ) and ('1.54 ) into ( 1.57 ) and ( 1.59 ) , and integrating,

according to the definition ( 1.61 - 1.63 ) we obtain the plate constitutive equations as

follows:
{Cm}=[CC]{C€}, (164 a)
where
All A12 0 Bll B12 0
A21 A22 0 B21 B22 0
Bll B12 0 D11 D12 0
Byy By 0 Dy; Dy O
0 0 Bgg 0 0 Dge
Ny €40
Ny €yo
N v
Cp = Y, Ce= | ¥, (1.64 b)
B/Ixy kxy
and
Q A 0 '
X _ 44 yz0 , (1.65)
Qy 0 Assg Txz0

where the reference plane strains ¢,g , €9 , and Txy0s reference bending curvatures ky,
ky and kyy and transverse shear strains v, , Yyzo are defined in expressions { 1.55 ),
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( 1.56) and ( 1.54 ) respectively, and for laminated plate

noorie 2
(AU’ Bu, DU ): z/ Qij ( 1,2z,2 )dZ, ( 1. 66)
k=1 hy

(,i=12),

n, by (k) 2
( AGG, B66, D66 ) = Z/ C66 ( 1, Z, Z ) dZ y ( 1- 67 )
k=17 hyxy
n, by (k) Q)
(Agqr Ags ) = Z/ (Cag "> Cgs " ) dz. (1.68)
k=1" hyy

where Q ij(k) and C m m(k) ( m=4,5,6) are the material constants defined in

( 1.60 ) and ( 1.57 ) for the kth layer of the n-layer laminated plate.

1.3.1.5 Governing Equations

The stress and moment resultants must satisfy the following equilibrium

equations:
ANy, . ONyy
x T dy 0.
My | Ny _
Ox Oy ’
8Mx a,MXY

OMy . OMyy B
By Tax T w=0

= =0, (1.69)
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where it is assumed that q = 0.
Substituting equations ( 1.63 ) and ( 1.64 ) into ( 1.69 ) the governing equations can

then be obtained for the five unknown functions ugy, vg, ¥x, ¥y and w.

1.3.2 A Simple-higher-order Theory
--------- Reddy’s Approach

1.3.2.1 The assumed Displacement Field

This simple-higher order laminated plate theory is due to Reddy [ 11 ] which is

based on the displacement field:

Wy, z) =ug(xy) +2 e = § (B2 (ox+ 520,
v(xyiz)=velxy)taley —3 (B2 (y+ §2 1,
wxy,z)=w(xy). (1.70)

Comparing to ( 1.42 ) for the homogeneous case, besides the reference plane
displacement ug and v, which is due to the bending and stretching coupling, the two
assumed displacement fields have the same z dependence. Here we have chosen the
midplane of the plate as the reference plane for convenience. Again these are the
lowest order expressions which can be made to satisfy the shear-free conditions on the
lower and upper surfaces z = + h/2 with the same five unknown functions ug, vq, ¥x,

Yy and w.

1.3.2.2 The Strain Field and Constitutive Equations

Introducing the same notations as in the expressions ( 1.43 ) and the reference
plane ( here the midplane ) strains as defined in ( 1.55 ), the strain field associated

with the displacement given by equations ( 1.70 ) are
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=

ex=5x0+z(kx+22kx ),
_ 2, (2
ey_ey0+z(ky+z ky ).
& =0; (1.71)

(2)).

Txy = Txyo + z ( kxy + 22 kxy

(2)

Txz = kxz + 22 kxz = Yxz0 »

2
‘sz = kyz + 22 kyz( ) = 7yzo . ( 1.72 )

Besides the coupling phenomenon these strains have the same feature as discussed for

the homogeneous case.

The constitutive equations for each layer will be the same as expressed in
equations ( 1.57 ) and ( 1.59 ) because the physical properties of the laminated plate

will remain the same regardless of what plate theory is used.

1.3.2.3 Equilibrium Equations and Plate Constitutive Equations

In this subsection we consider the plate constitutive equations and the
equilibrium equations at the same time. Because two approaches are used to obtain
the plate equilibrium equations which require different plate stress and moment

resultants.

( 2 ) Standard Plate Equilibrium Equations

As generally used for the plate problem, the standard equilibrium equations

[15] are

ONy any_
x Ty =0
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8Qx , 9Qy _
T2+ 5L =0. (1.73)

These equations have been used by Levinson [ 12 ] for a homogeneous plate.
Corresponding to the set of equilibrium equations ( 1.73 ) , defining the stress
resultants and stress couples Ny, Ny, Nyy, Qx, Qy and My, My, My as in the
expressions ( 1.61 ), ( 1.62 ) and ( 1.63 ), we could arrive at the same type of plate
constitutive equations as expressed in ( 1.64 ) and ( 1.65 ), where the coefficients A,
B;; and C;; are defined exactly the same as in the expressions ( 1.66 ) - ( 1.68 ). Of

course, the correction factor K is not needed any more.

( b ) Using the Principle of Virtual Displacement to Derive the Plate Equilibrium

Equations:

As could be seen later, the equilibrium equations ( 1.73 ) are variationally
inconsistent with those derived from the principle of virtual displacements for the
displacement field used in ( 1.70 ), because ( 1.73 ) is the equilibrium equations
corresponding to the first-order plate theories. By using the equilibrium equations
( 1.73 ), the higher-order terms of the displacement field are accounted for only in the
calculation of the strains but not in the governing differential equations. Reddy [11]
corrected these equilibrium equations by deriving the plate equilibrium equations by

means of the virtual work principle.

The principle of virtual displacement can be stated in analytical form as

+h/2
0= J j [ox bex + oy bey + Oxy 67xy + Oyz §7yz + Oxz 67xz ] dA dz
-h/2 g

+J q dw dx dy , (1.74)
(7]
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where h £ is the volume of the laminated plate and é denotes the variational

symbol.Substituting the strains from ( 1.71 ) and ( 1. 72 ) into ( 1.74 ), for example,

we have for the first term:

+h/2

+h/2
J J ox bex dA dz = J J ox bex dz dA
~h/2 n n J-h/2

+h/2 )
=J J ox 6 [ 6o +2 (ke + 22 ke'® )] dz dA
n -h/2

: +h/2 +h/2
= J { beyp [J ox dz ] + 6ky [ J ox z dz |
Jn -h/2 -h/2

(2) +h/2
+ 6ky [J oxz> dz] } dA
~h/2

—J 981 N A +J 9 5%x ., dA
0 X 0 Ox

4 9 b3y 82 bw )
* .[n['shQ (o T g ) 1 Pdds

where

+h/2

(NXaLIJ(’PXy):J Ux(l,Z,Z3)dZ.
—h/2

Thus, defining the following stress resultants

+h/2

(NX,Ny,ny)= J’ (Ux, o’y,a'xy )dZ
-h/2
+h/2
(Mx,My,Mxy):J (Ux, Uy,oxy)zdz
-h/2
+h/2
(Px,Py,ny)-:j (Ux, ay,axy) stz
~h/2
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+h/2

(Qx,Qy)=j (oxz oyz ) dz

-h/2

+h/2
(Rx,Ry)=J (oxz, Oyz) 22 dz (1.77a-e)
-h/2

equation ( 1.74 ) can be written as

— 9 bug 8 §yx 4 0 sy 82 Sw
0= [ xSt S Pl gl (gt )
g bv 8 6y a8 6y 2
+ Ny ayo + My 3yy + Py [- 312 ( ayy + 86y<52w ) ]
d bu d bv aé 0 6¢
by (T 4 D04 My (g 4 g )
4 0 6y 9 ¢y 8% bw
+ny[-3h2 ( Oy ¥ Ox +2 ayax)]
8w 4 O bw
+Q (§¢y +5 )+ Ry [-— 5 (8y + 5= ) |

+Qu (v 48y Ry [y (et G ] Habw) dxdy.

(1.78)

Integrating the expressions in equation ( 1.78 ) by parts, and collecting the

coefficients of éu, év, bw, §¢x and 8¢y, for ¢ =0 we obtain the following equilibrium in

the domain £2:

. 6Nx aNXY —
bu : —6_)( + -—5}’— =0 ’
6V . 6X —5—)’— - 0 ’
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0Qx , 9Qy 4 , 9R4 , ORy

dw Bx + ay h2 Ix Ty)
2 2
4 %Py, OPxy 0Py
2 =0
+ 3 h? ( a2 | Fyox dy* )
. OMy , OMyy 4 4 0Py | OPxy \

6¢X' 3x + ay 'QX + FRX = 31’12 ( 3)( + ay )‘_ ]

oM M 6P oP
Sby : ety Ut g Ry - o (G =0,

(1.79a-¢)

Comparing to equations ( 1.73 ), the underlined terms are the consequence of the

higher-order terms in the displacement expressions ( 1.70 ).

Corresponding to the equilibrium equations ( 1.79 ) the plate constitutive

equations will have the following form:

where

CC =

{CM} = [CC]{CE}, (1.80a)
Ay A 0 B,y By, 0 E;; Eypp 0
Ay Ay O By By, O Eyy Epp O
0 0 A66 0 0 B66 0 0 EGG
B;; By O D;; Dy, O Fyy Fip O
B,y By 0 Dy; Dy O Fp Fyp O
0 0 Bgg 0 0 D66 0 0 F66
E;; E;inp O F;, F;, 0 Hy; Hy, 0
Ey;y Ep O Fyp Fpp O Hy; Hy, O
0 0 E66 0 0 F66 0 0 H66
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CM = [ Nx Ny Ny M
CE = [ 0 €0  Txyo Kx
and
{CQ}= [CCR] {CK},
where
[ A4, O Dy O
0 A 0 D
CCR = 55 55
D4y 0 Fae 0
Qx
Qy
CQ = y CK =
Ry
R‘y
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Kny kx(2) ky( ) kxy( )] T’
(1.80b)
(1.81 a)
Tyzo
Txz0
2 3
kyz( )
2
kxz( )
(1.81b)



B

where A , etc. , are the plate stiffnesses, defined by

ij > Bij

(AsBy Dy Ey,Fy, Hy )

+h/2
=J Qij(l,Z,Z2,23,Z4,ZG)dZ, (i’j=152)>
—-h/2

( Ags . Dags Faq)

+h/2
:j C44(1,Z2,Z4)dz,
-h/2

( Ass. Dsg, Fgg)

+h/2
=J 055(1,22,24)dz,
-h/2

(Ags Bes-DgsrEgesrFeesHege )

+h/2
=J C65(1,z,zz,23,z4,26)dz
—h/2

(1.82a-e)

1.3.2.4 Governing Equations:

For each set of equilibrium equations ( 1.73 ) and ( 1.79 ), substituting the
corresponding plate constitutive equations, the governing partial differential equations
in terms of the unknown functions ugy, vy, w, ¥x and ¥y can be derived. It must be
emphasized that in solving the governing equations derived from ( 1.79 ), the
corresponding boundary conditions, which are also derived from the principle of
virtual displacements, must be used. Upon solving the governing equations the five
unknown functions ug, vg, w, ¥x and ¥y can be obtained and the corresponding

elasticity problem can be solved.

38



Chapter 2. Laminated Plates with a Through Crack

2.1 INTRODUCTION

In chapter 1, prior to treating the more complicated problem of a laminated
plate containing imperfections or cracks, a brief review of several commonly used
transverse shear deformation plate theories were presented. In this chapter, the focus

is on the laminated and heterogeneous plates containing a through thickness crack.

As we know the primary purpose of the stress analysis in structures is to
study their strength and failure. In many cases the failure is attributed to the growth
of cracks or crack-like flaws that exist in the structure. This requires, in addition to
the application of standard failure theories specified by the traditional strength of
material, the treatment of the problem of acceptance and safety from the viewpoint of
fracture mechanics. Presently no complete solution of the plates failure problem in
non-homogeneous or anisotropic plates is available becé.use of the inherent difficulties
in stress analysis and material characterization of such laminated structures. During
the past two decades many investigators have studied the stress state in the
immediate neighborhood of the crack tip in a homogeneous isotropic medium since the
local fracture of the structure appears to be governed mainly by this stress field. The
stress intensity factor, which represents the singular behavior of the stress state near
the crack tip, has been used quite effectively as the primary load factor in the fracture
analysis. Moreover, the knowledge of the stress intensity factors is a prerequisite for
the fracture control, the residual strength, and subcritical crack growth analysis. The
main interest in this chapter is in obtaining the stress intensity factors in laminated or

heterogeneous plates containing a through thickness crack.

The orthotropic laminated plate, which could represent laminated composites
or bonded materials, is composed of thin homogeneous layers of different orthotropic
elastic properties. The heterogeneous plate may have continuously varying properties
through the thickness. By using the so called “single-layer laminated plate theories”
discussed in Chapter 1, we will assume that the individual lamina are elastic and are
perfectly bonded along interfaces. Global laminated properties are obtained by

integrating lamina properties through the thickness. The general linear laminated and
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heterogeneous plate theory developed by Yaing, Norris and Stavsky [7] and examined
in Chapter 1 is used here, because it is believed that this theory is the best
compromise between simplicity and accuracy. Some observations in this regard are
given later in this chapter. The governing equations which are a set of partial
differential equations will be solved by using Fourier Transformation technique.
Finally a pair of singular integral equations will be derived to solve the related mixed
boundary value problem. Then the stress intensity factors can be obtained for various
geometries and bending or membrane loading conditions. Only the mode I crack

problem will be considered.
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2.2 FORMULATION OF THE PROBLEM

The problem of interest is shown in Figure 2.1. The “infinite” laminated plate
consisting of an arbitrary number of bonded orthotropic layers contains a through
crack of length 2a. The total thickness of the plate is h. The system of coordinates
and the definition of the variables are defined in the same way as in Chapter 1,
particularly as in the general linear first order plate theory described in subsection
( 1.3.1 ) of Chapter 1. We also assume that the coordinates x, v, and z axes

correspond to the princople orthotropy axes of each layer.

2.2.1 Fourier Integral Transformation

Following the general linear laminated plate theory reviewed in ( 1.3.1 )} of

Chapter 1 the assumed displacement field is :
u(xy,z)=u(xy)+z¢(xy),
v(x%y,2z)=vo(xy)+zdy(%y),
w(xyz)=w(xy), (0<z<h),

(2.1)

where u, v, and w are the displacement components in the x, y and z directions
respectively, ugy and vy are the displacement components in x and y directions of

reference plane ( i.e. z = 0 plane ) and ¢4 and ¥y are the rotations of the sections of

x=constant and y=constant.

By defining the reference plane strains €,5 , €yg > and Yyyo; reference bending

curvatures ky, ky and kyy and transverse shear strains Yy, » Yyzo 28 follows:

Ougy Ovg du Ovg
x0T Bx o = gy Yo = Fy t
9 oy _ 0y Oy
kX - 6)( ’ ky - ay ’ kxy - ay + 6X H
Yxz0 = vy + Q’%’ » Tyz0 = d’y + %“—;‘ s
(22)
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the plate constitutive equations can be written in the following form ( see 1.64 )

{Cm}=1[CC] {Cc}, (23a)
where
Aj; A O B;;, By, 0
Ay Ap 0 Byy By, 0O
CC=[0 0 Ag 0 0  Bg
B;; By, O D;; Dy, O
By By 0 Dy; Dy O
0 0 Bes 0 0 Dee
Ny €40
Ny €yo
N ¥
Cm = Y, Ce= | X%, (2.3b)
M, ky
My ky
Mxy kxy
and
Q A 0 ¥
| = o 20 (23¢)
QY 0 ASS Txz0

where the stiffness constants Aj;, Bjj and D; (i,j =1, 2 ) are defined in ( 1.66 ) and
A;(i=4,5,6)in(1.68 ) and ( 1.67 ). For example

n hk
K .
Bij:kzl J Q;“zds, (i,j=1,2),

M1 (2.4)
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for a laminated plate of n layers and QU of each layer are defined in ( 1.60 ).

Note that the bending - membrane coupling phenomenon, which was first
studied by Reissner and Stavsky with classical bending theory, can be seen easily in
the expressions ( 2.1 ) and ( 2. 3 ). Unless B;; (i,j = 1, 2 ) are all zero, the problem
will remain coupled. If the plate is symmetrically layered, and taking the plane of
symmetry ( i. e. the midplane ) as the reference plane it may be shown that the By’s
( see expression { 2. 4 ) ) are all zero, and consequently the problem becomes

uncoupled.

For convenience, for this general linear laminated plate theory the five
unknown functions, ug, vg, w , ¥Yx and ty, are defined as the “displacement” vector

[ U ] as follows

[U]:[ul uz Uz U4 “s]T=[uo Vo ¥x Yy w]T.
(2.5)

Substituting ( 2.3 ) into plate equilibrium equations ( 1.69 ) and considering ( 2.5 ),
the governing partial differential equations in terms of the unknown functions u; are

found to be

AUy s + (App 1 Age ) Uayx + Age Uiy

+ By Uz + ( Bio + Bgg ) Uaxy + Beg Uzyy = 0

Aggloxx + (A1p + Age ) Uy xy + Aga Ugyy

+ Bgg Ugxx + ( Bia + Bgg ) Uz xy + Baa Ugyy =0,

Byju; 4 + ( Byp + Beg ) Uz,yx + Bee U1,yy

+ Dy gy + ( D12 4 Deg ) Uaxy + Dee Uz yy - Ass Uz - Ass Usx = 0,
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Beeupxx + ( Bia + Bgg ) upxy + Boo upyy
+ Dgg ugxx + ( D12 + Dgg ) ug,xy + Dop ugyy - Agq us - Agqusy, =0,

Agq uqy + Agausyy + Agg Uz x + Agg Ug iy = 0.
(26a-¢€)

Taking the Fourier Transforms of equations ( 2.6 ) and defining

1 [* Cia
U =5 J ¢ (x,a)e Y da,
I (2.72)
o iay
¢ = J v(xy)e dy,
- 00
i=1, ... 5,
(2.7b)
we arrive at the following ordinary differential equations:
CA%+CB¢ +CD2®=0,
(2.8)
where
(2= ¢ ¢ ¢5 ¢4 45 |7,
(29)
$=®,XX7 éz@,Xa
~ -

Aj; 0 By, 0
0 Ags 0 By
CA=|By; 0 Dy; O
0 Bgg 0 D
0 0 0 0 -Ag

Qo O o o
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0 Aj1tAes 0 B,5>+Begg 0
AjotAgs 0 B;,1Begs 0 0
CB=(-ia) 0 Bj12+Bes 0 Di2+Des - Ass o
B12+Bge 0 D,5+Degs 0 0
0 0 -Agg é 0 0
[ 02Aq 0 a?Bgg O ]
0 -a?A,, 0 -a?By,
CDh = '02B66 0 —(02D66+A44) 0 0
0 -a®By, 0 -(a®Dyp+Ags) icAgs
(2.11ac)

Upon determining the eigenvalues s; and the eigenfunctions C;; of equations of ( 2.8 ),

observing that ¢, (1 = 1,.... 5 ) must be finite when x— oo, and thus taking the
;X

coefficients of the terms having e ' with Re(s;)>0 to be zero, we finally obtain the

solutions of equation ( 2.8 ) as:

5 5:x
$i= > CijAla)e’, Re(s;)<0, (ij)=1,...5.
=1

(2.13)

Thus, the unknown displacement components u; can be expressed as

—— > ¢ (x a)e_iayda
1T 2T . i )
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where Aj, (Jj = 1,.., 5 ) are the unknown functions which can be obtained by
applying the boundary conditions. Substituting ( 2.13 ) into expressions ( 1.53 - 1.56 )
we obtain the strain components. Furthermore, substituting these into plate
constitutive equation ( 2.3 ), the relevant expressions of stresses, moments, and

transverse shear resultants can be obtained.

2.2.2 Boundary Conditions

Assuming that x = 0 and y = 0 are planes of symmetry with respect to
loading and geometry and that the problem has been reduced to a perturbation
problem in which the crack surface stress and moment resultants are the only nonzero

external loads, the boundary conditions may be expressed as ( Figure 2.1 ):

ny(0+’Y):0a

My (07, 5) =0,

QX(O+’y)=O’ ('°O<y<°°)’
(214 a-c)
Ne (07, y)=1, (v), 1y < a,
u (0%, y) =0, |y |> a,
My (0%, y) =1, (y), 1y < a,
Y (01, y) =0, |y > a.
(214 de)
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Three of the unknown functions A,,..., Ag maybe eliminated by using the
homogeneous conditions ( 2.14 a-c ). The remaining two are then obtained from the

mixed boundary conditions ( 2.14 d,e ).

2.2.3 Singular Integral Equations

To solve this mixed boundary value problem, we define the new unknown

functions as follows:

;,)iywx(o,m:Gz(y),
(-0 <y < o),
(2.15)

750 (0,y) =G (¥),
(-0 <y < o).
(2.16)

By using ( 2.4 ) and ( 2.13 ), it can be shown that

Gy () =% v (0,y) = 55 us

o0
= Lim -l J
-0

5 e s
5 - C:,‘J-Aj(cv)eJ (-ia)e 'Y da,
x—0 =1

J

- o0

5 0o .
S CyAfe)(-ia)=| Gy(y)e'*Vay
=1

=‘r Gy,(t)e ' *tdt=g,(a),

(2.17)
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Gl(Y):?)Ly“o(O,Y)=%U1

=1
2 . b iay
> CiyAa)(-ia)= Gy(y)e dy
j=1 - 00
a '
=J Gl(t)e'atdtzgl(a).
-a
(2.18)
To obtain the unknown functions A, (@ ), (i =1, .... 5 ), in terms of g; and g,, the

homogeneous boundary conditions ( 2.9 a-c ) are applied first. Starting with

ny(0+aY)=0,

and by substituting ( 2.13 ) into ( 2.3 ), we obtain

Nxy = Agg U1y + Agg Uz x + Bgg U3y + Bgg 1y 4

= L J [ Aes 3 CyAfa) e (-ia)
- 00 s

5

5 §.X 5 X
+B%z%%ﬂﬂﬂeJ(Ja%+%ezyhﬁhﬂe (s;)

J j=

5 5.X o
+ Bgg E CyjAj(a) e’ (s;) ] e ' *Vda .
i=1

(2.19)
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By inverting the Fourier integral, we find
5
=1

(2.20)

Similarly, from

Mxy(0+a}’)=0 a'nd QX(O+’Y):O3

it can be shown that

5
Y [CyyBeg (-ia)+ CqDgs (-1a)+ Cy Beg s
=
+c4jD665j ]AJ(O’)ZO.
(2.21)
3
i=1
(2.22)

Solving the system of linear algebraic equations ( 2.17 - 2.18 ) and ( 2.20 - 2.22 )

A;(a) may be expressed as follows

Ai(a)=Q; g (a)+Qpe ()
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= Q Ja Gy(t)e '@tay +Q-J G,(t)e "*tat
il ~a 1 i2 2 ’

-a

(2.23)

where Q;; and Q;, are the algebraic expressions from the solution of the equations

(2.17-2.18 ) and ( 2.20-2.22 ) .

Substituting ( 2.23 ) and ( 2.13 ) into the strain field ( 1.53 ) - ( 1.56 )}, and using
( 2.31 ), the resultants Nx and My may be expressed as:

My =Bjyuyx+ Byouyy + Dygugy + Dipugy,
(2.24)

1 [ > K,
My J [ B122C2jAj(a)e (-ia)
- 00 j—_-].

Il
|
3

il SJ-X . 5 ij
+ Dy EICM'AJ(“) e’ (-ia)+ By ECUAJ'(“) e’ (s)

i= i=1

] §.X s
+ Dy, '21C3jAj(a) e’ (s;) ] e 'Y do

J:

N °° i o (ty)
= 5 Gy (t)dt Hy; (o, x) e da
T Ja -o00

o0

a .
(e Ja Gz(t)dtj Hyy (o, x) e @ g4

- 00

(2.25)
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5
Hye= >, { [B1Cysj+Bio Cy(-ia) + DGy
i=1

s X

(k=1,2),

(2.26)

Nx =Ajyuyx +Ajpupy + Byyugy + Biougy,s
(2.27)

* g i a (t-y)
11 (@, x) e do

a
Ny = 217r J_a Gl(t)dtj

- 00

o<

a .
+ o J Gz(t)dtJ Hy,(o,x) e * D da,
_a .

- 00

(2.28)

5
Hy = > { [AnCyysj+ A1 Cy(-ie) + ByCys
= ~

s:X

+ By Cpy (i) ] Qi el
(k=1,2).
(2.29)
Observing expressions ( 2.25 ) and ( 2.26 ) and applying the mixed boundary

conditions ( 2.14 d, e ), we finally obtain two integral equations to determine the new

unknown functions G, and G, in the following form:
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00
X— - 00

a 2 .
'aj:l

(1=1,2), |y | <a
(2.30)

By further examining the functions Hy;, it can be shown that they are bounded
everywhere for finite a. Therefore any possible singularity of the kernels in ( 2.30 ) at
y=t must be due to the behavior of HUS(,.C:(’X) as a— Foo. Note that Hij contains
exponential damping terms of the form e’ , where Re(sj)<0. However, since in the
limit x will go to zero, for y=t this damping does not insure the convergence of the
inner integrals in { 2.30 ). The major difficulty in this problem, of course, is that the
functions sj(x) are not known explicitly in terms of a. For the purpose of examining
the singular behavior of the kernels in ( 2.30 ) and extracting the singular parts, all
one needs, however, is the asymptotic behavior of sjas | a | —oo. Thus, from ( 2.8 )

- ( 2.11 ) it can be shown that for large values of | o | we have

s; (o) s Sin
‘”Tl:—(so-*—-%—-*-—;?—-f ...... ),

(2.31)

where s is a constant.
Now using the relations ( 2.31 ) and separating the asymptotic values of H;; for large

| a |, the kernels in ( 2.30 ) may be expressed as :

[s,¢] . oo .
J Hu(a,x)e'a(t_y)dCY:J HUOO(a’x)ela(t'y)da

-0 - 00

o0 . t
+J [ Hy(o,x)- H® (a,x) ] e * " da,
oo

where Hijoo is the asymptotic value of HU for o | — oo.
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The first term on the right- hand gives Cauchy-type kernels

1__  and the second
t-y

integral is uniformly convergent for all t and y ( in which the limit x=0 can be
therefore be put under the integral sign ). After the asymptotic analysis and some
lengthy but straightforward manipulations the integral equations and the kernels may

then be expressed as follows:

2 ) a @G, 9 a
Z Fﬂy J-a J(t)_dt+z J_aklj(y,t)Gj(t)dtzfl(y),

= =1
2 Haj a Gj ( t ) a
ij? J'ﬁTT”“+Z:J ky (¥, 8) Gy (t)dt =1 (v)
J:l -a J::l -a
(233a,b)
where p;; (ij = 1, 2 ) are material constants obtained from the asymptotic analysis,

f.(y) (i=1,2) are defined by ( 2.14 d, e ) and the Fredholm kernels K, are

obtained from
k(yt ——-—1 [H (010 H.°(a,0 ] i (t_y)da
i t) S ij ,0)- ij (a,0) e )

(i,j =1,2 ).
(2.34)

From the definitions of G; and G, given by ( 2.15 ) and ( 2.16 ) it follows that (2.33)

must be solved under the following single - valuedness conditions

J G (y) dy=0, (i=12).

(2.35)

Note that, when the plate is symmetrically layered about the z = 0 plane, by
taking the plane of symmetry as the reference plane we find H;, = H,; = 0, and
consequently g5, = pp; = 0 and ky» = ky; = 0. Thus, the bending and in - plane

stretching problems would be decoupled.
53



2.3 STRESS INTENSITY FACTORS

2.3.1 Solution of the Singular Integral Equations

The two unknown density functions G; and G, can be obtained by solving the
singular integral equations ( 2.33 a, b ) numerically. The two most commonly known
numerical methods for solving such singular integral equations are Quadrature
method [ 19 ] and Collocation method [ 20 ], [ 21 ]. In this chapter, the singular
integral equations are solved by collocation method ( also called expansion method ).

To solved the integral equations:

9 By a X 2 a
v J_a-ﬁdt+ ) j_a ky (3, 8) Gy (t)dt=1; (y),

2 A G(t) 2, 2
H2j i =
> A et Y[ k(a6 () d=6(y),
j=1 a =1 &
|y 1< a
(2.33a,b)

we first express the unknown functions in terms of their weight functions

()
(a2-t2)1/2

Gi( t)::
(2.36)

and then normalize the interval ( - a, a ) by defining
t = ar, (-a<t<a, -1<r<1),

y = as, (—a‘sy<a'$ '1SSS1)’
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fi(y)z-?i(s)’

gi(r)

Gi(t)=—m~,

fi(t)‘=a'gi(r)’

Ly(r,s)y=ak;(y,t).
(2.37)

By substituting ( 2.36 ) and ( 2.37 ) into ( 2.33 ), we obtain:

2 Hij a gj(r)
7 dr +
j; J-a(l—r2)1/2(r-s)

2 a
E J. Llj(r,s)gj(r)drle(s),
=1 e

2 Haj a gj(r)
—— dr +
Z 4 J’-a(l-rz)l/z(r-s)

2 a
Z J sz(T,S)gj(r)dr=Tz(s),
=1 -2

1si<1.

(2.38)

In applying the collocation method, we choose

-

g1(r)= .Zlajhj'l(r)’
J:
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N
g2 (r)= Z by by (1),
j=1
(2.39)
where hj ( r ) are linearly independent coordinate functions chosen to “fit the curve”
and the a and bj are coefficients to be determined. It is believed that the best choice
of h; ( r ) are orthoganol polynomials, because the coefficients show convergence as N

is increased (see [21] ).

Here, we let

hj-i(r)=Tj-i(r)»
(2.40)

where TJ-_1 ( r ) are the Chebychev polynomial of the first kind corresponding to the
weight function of expression ( 2.36 ). Note that these equations must be solved under

the following single-valueness conditions:

a 1

J G, (t) dt =0, or J —Lr)mdrzo,
-a -1 (1-1%)

a 1 :

J G,(t) dt =0, or I g2(r)1/2 dr =0,
-a -1 (1-r2)

(2.41)

From ( 2.39 ) and ( 2.40 ) it can be seen that these extra conditions are:

1 Tj-1(r)r
-1 (1-r2)1/2

dr=20,

N
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N 1 T. r
X:HJ —JiLJ—drzo.
=1

(242)
Using the orthogonal conditions:
b Ty (1) To(r)
J 2/2 dr = 0, n # 0,
-1 (1-1%)
, n=0,
(243)
and observing that Ty (r ) =1, we obtain
a; = 0,
b;= 0,
(2.44)

Considering ( 2.44 ) for further convenience, we rewrite the unknown functions as

follows:
M
g1(r)= z ay Ty (1),
k=1
2M
g (r)= ay Tem (1)
k=M+1

(2.45)
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Substituting ( 2.45 ) into ( 2.38 ) the éingular integral equations can then be

expressed as follows:

M oun 1 Ty (r) d
E T 2k 5\ 172 T
k=1 -1 (1-17) 7" (r-8)
) B2 Tem (r)
+ T A > 172 dr
k=M+1 -1 (1-1%) " (r-s)

. M 1 T, (r)
+ a J Ly,(r,s) —K-—~ _ dr

%% 1 Tem () —
+ a j Lip(r,s) —————dr = f{;(s),
ST k| ) 12 (1-2) 172 1

M 1
K21 o Ty (1) dr
2, kJ-l(l-r2)”%r-s)

Tem (1)

dr
1/2(1‘-5)

H22
Y e
k=M+1 -1 (1-12)

1
+ a, I Ly(r,s) Ty (r) dr

k:l -1 (1-1‘2)1/2

1
akJ Lyy(r,s) —rI—‘—k:—M—(—rl/)—zdrzz(s),
=M+1 -1 (1-1%)

s <1,

(246 a,b)
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where the unknowns are a, ( k=1, ..... 2M ).

In the collocation method there is no restriction on the choice of s. In this study we

choose Ty, (s;) = 0 or

s, = cos (&=Ll 7)), (i=1,...M)..
(2.47)
In ( 2.46 ) for a given value of s there are two integrations to be evaluated. Any

standard technique can be used, for example, Gauss - Chebychev quadrature which

takes advantage of the weight

1 h(r) N
,[_1 m‘é dr = ;th(rj),

J
(2.48)
where
i-1
rj-—cos( 1‘11_1 T ),
_ 1 n
“iITN-T
Wi = .1 j=2,... N-1,
_ 1 _ =
“NTTN-1
(2.49)
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For the singular integrals, such expansion function Tj (r) give the closed form

expressions:

Jl Tj( r)

-1 (1-1'2)1/2(1‘-5) (e

(2.50)

where U; ( r ) are the Chebychev polynomials of the second kind.

Using ( 2.49 ) and ( 2.50 ) with the collocation points s; as in the equation ( 2.47 ),
the singular integral equations ( 2.46 a, b ) can be evaluated at M different points
giving 2M linear algebraic equations for a; ... ay,,. The unknown functions Gy (t)
and G, ( t ) can then be obtained from ( 2.45 ) and ( 2.37 ).

2:3.2 Displacement Components along the Crack

From the previous subsection and ( 2.15 ) and ( 2.16 ) we could express the

unknown functions as follows

M T a
Gl(y):_363’—‘10(0’}’)=kz—:lak Ez—kgﬁ *
M Tem( ¥/2)

H

=0 =
Gy (y)= Oy l/)X(O,y)_kz%I:-;-lak (az_yz)l/z

Y| <a,
(2.51)

where T | are the Chebychev polynomial of first kind, a, (k = 1,.., 2M ) are the
coefficients determined by solving the singular integral equations ( 2.46 a, b )

numerically, and a is the half crack length.
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From the definition it is clear that for|y | > a

G, (y)=0, Gy(y)=0.
(2.52)

From ( 2.15 ), ( 2.16 ) and ( 2.52 ) we could then easily obtain the displacement

components along the crack as follows

y
w0 (0,y)= [ Gi(y)dy

M y a
ca P [ LR

k=1 ca (a2-y2)?

(2.53)

y

Yx (0,y) = J G, (y)dy
-a
_. 2M . J»y Tk—M(y/a) ay |
k=M4+1 ~a (a2-y2)?

(2.54)

Note that physically ug is the displacement in x direction in a given reference plane z
= 0, and vy is the rotation of x = constant plane in the plate. From the basic
assumptions of the displacement-based plate theory ( 1.52 ) we obtain the

displacement of the plate in x-direction as follows ( see figure 2.1 and expressions

(2.1) )

u(xy,z)=u(xy)+zé(xy)

(2.55)
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We also observe that due to the first oder theory used the value of uy ( x, y ) depends
on the choice of the reference plane whereas the value of u ( x, y, z ) and ¥x ( x, y)
will not do so. In this study for further convenience, and without any loss in
generality, we choose the neutral plane of the laminated plate as reference plane.
From ( 2.53 ), ( 2.54 ) and ( 2.55 ), the u ( 0, y, z ) which is the displacement in x-

direction along the y - z plane ( i. e. the crack plane ) can then be obtained as

u(anaz)ZHO(O)Y)+Z¢X(OaY)

y.
= [ 16y 426,057 ey,

|y | <a.
(2.56)

Since the laminated plate consists of layers with different material properties, the
displacement component u ( 0, y, z ) or ug ( 0, y ) and ¢« ( 0, y ) , which are
essential to describe the behavior of the through - thickness crack, will depend on the
stacking order of the layers. In this work the nature of u ( 0, y, z ) will be studied for

the following combinations:
i ) symmetrically laminated plate;

ii ) unsymmetrically laminated plate;

under uniform tension or bending.

I. Symmetrically Laminated Plate

For a symmetrically laminated plate the neutral plane corresponds to the
plane of symmetry of the plate. For such a plate by taking the symmetry plane as the
reference plane, the bending and in-plane stretching problems may be decoupled.

Theréfore, the singular integral equations ( 2.33 ) become:

a
B G, (t)
[ SRt a=n),

(2.57)
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for in-plane stretching problem,

a a
p G, (t
3% [_35_—y)dt+J_akzz(y’t)Gz(t)dtzﬁ(”’

|y |<a.
(2.58 )

for bending problem. Here f; ( y ) and f, ( y ) are defined by equations ( 2.14 ).

From ( 2.57 ) and ( 2.58 ) we can easily see that the in-plane stretching
problem and the bending problem are reduced to , respectively, a homogeneous single-
layer plane stress problem and a bending problem for a plate with a central crack.
This is expected because we have used the so-called single-layer laminated plate
theory which is based on replacing the laminated plate by an equivalent single-layer
anisotropic plate. Note that G, (y ), G, (y ) and u ( 0, y, z ) are the global
quantities introduced by this type of plate theory. After solving for the unknown
functions G; (y ) and G, (y ), the displacement component along the crack u ( 0, y,

z, ) can be obtained

u(0,y,z)=uy(0,y5),
(2.59)

for the in-plane stretching problem, and

u(an,z) EZ'J)X(OaY)v
(2.60)
for the bending problem.

II. Unsymmetrically Laminated Plate

Unlike the symmetrically laminated plate problem, the unsymmetrical plate
problem is inherently coupled. It is expected that for such a plate even if is under
uniform tension applied in its neutral plane, there exist both the in-plane displacement
ug ( 0, ¥y ) and the rotation ¢x(0, y ). The singular integral equations in this case are
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2 Coa Gi(t) a

Hij j =
> L J_a_t-‘y_‘d”g j ky (¥, t) G (t)dt=1; (v),
j=1 =1 a
2 L2 Gi(t) 2.

Haj j =
-Z:T J —y At ) ,{ koi (v, ) G (1) dt =1, (y),
j=1 a j=1 a

1Y | <a.
(2.33a,b)

The problem will be solved separately under uniform tension and uniform bending

defined by

fl ( Yy ) = NOO,
f2 ( y ) = 0:
(2.61)
and
f1 (y)=0,
f2 ( y ) = MOO’
(2.62)
respectively.

Again using the numerical procedure described in subsection ( 2.3.1 ), after obtaining
the unknown function G; (y ) and G, ( y ), the displacement component along the

crack plane can be determined by the equation

y
w(oyz)= [ [G(y) +2G(¥)] dy,

1y | < a.
(2.56)
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2.3.3 Stress Intensity Factor

It is well known that from the linear elastic theory of crack problem, the mode
I stress intensity factor at the embedded crack tip can be obtained by one of the two

alternate definitions

kl(z)= le_'_JQ(y'a’) UX(O,Y1Z)"

y—a
(2.63)
kl(z)::yL_i?n;__p_ 2(a-y) %u((),y,z)a
(2.64)

where ~Ji is a material constants defined by

o= ifl = for isotropic material, where k=3 - 4v for plane strain,
—__3-v :
and k= 1T v for plane strain,
- =L, forpl
A =3 or plane stress,
o =—FE for plane strain
l‘l 2 ( 1 _ V2 ) ? p ’
and
— _ 1 (933415 (-1/2 dyy | 1/2 2dyp +des 4-1/2
F—z( D) ) [(d22) + 2d22_] 3

( 2.65)

for orthotropic material when crack is located in yz plane and dij is defined in

Appendix L

Note that definition ( 2.63 ) is based on the stress distribution outside the
crack, whereas definition ( 2.64 ) is based on the displacement component along the

crack plane u { 0, y, z ) inside the crack. Naturally, for this displacement based plate
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theory we use definition ( 2.64 ) to get the stress intensity factor at the crack tip as

follows

ki(z)= Eim Fm 2(a-y) £ u(0y2),
(2.66)

where 7~ is a material constants defined by ( 2.65 ) for the mth layer of the
laminated plate and the displacement component u { 0, y, z ) has been discussed in

detail in the previous subsection ( 2.3.2 ).
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2.4 RESULTS AND DISCUSSION

Two types of plate problems, a homogeneous plate and a laminated plate with
a central crack, are studied in this chapter. The mode I stress intensity factors are
obtained for each case. For homogeneous materials, we are interested in cracked
plates subjected to bending only. Although in this chapter only the general linear
laminated plate theory is implemented to solve the crack problem, in a similar
manner, the other three transverse shear deformation plate theories reviewed and
discussed in chapter 1 have been used to solve the crack problem in an isotropic
homogeneous plate. This is done to investigate how different plate theories affect the
description of crack tip stress behavior and to give an assessment to the plate theory
used in solving the laminated plate problem. For a laminated plate the results given
are by using the general linear laminated plate theory. As will be seen later, this
approach can be justified from the homogeneous plate results. In this case the
problem is solved under both tension and bending loads. It should be emphasized that
when we say the plate is under bending it is always assumed that the plate is under
membrane as well as bending loads so that there is no interference of the crack
surfaces on the compressive side of the plate. This can be achieved by linear

superposition.

The elastic constants of orthotropic materials used in the numerical examples
are given in Table 2.1. These materials are all fiber reinforced graphite-epoxy
composite laminates. Note that material B is the same as material A, except that the
axes are rotated 90° about z, which is true also for materials D and C. For isotropic
materials, E; and v, (i=1,2,3) represent the Young’s modulus and Poisson’s ratio
of the ith layer in the plate. To study the effect of the material properties on the
stress intensity factor, some hypothetical material constants are also used to solve the

problem.

2.4.1 Homogeneous Plate

The elastic problem for the symmetric bending of a cracked homogeneous
plate has been considered before. For example, with Reissner’s stress-based first order
plate theory, the problem was solved for an isotropic plate in [ 21 ] and for an
orthotropic plate in [ 22 ]. In this study some additional results are given in

conjunction with the displacement-based plate theories, namely, Mindlin’s first-order
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plate theory and a simple higher - order plate theory described in Chapter 1. Table
2.2 shows the effect of the thickness ratio a/h on the stress intensity factor, which are
obtained by different plate theories. Classical bending theory’s results are included for
the purpose of comparison. Because of the Kirchhoff assumption the classical theory
gives rather inaccurate results near the boundaries. In a crack problem the crack
surfaces are plate boundaries and the important part of the solution is its behavior
very near the crack tip. Therefore, classical plate theory is somewhat inaccurate in
solving the crack problem. This can be seen in Table 2.2, since it gives the same
normalized stress intensity factors regardless of the value of a/h. Moreover, from
Table 2.2, it can be seen that the other three transverse shear deformation theories
give much the same values regarding the normalized stress intensity factor, with the
variation of only about 1%. Later on, based on this observation, for computational
convenience, a generalized Mindlin’s displacement based first-order plate theory will
be used for laminated plate problems. In the meantime, the effect of the transverse
shear correction factor K in Mindlin’s theory [ see ( 1.18 ) ] on the stress intensity
factor is also studied. The results are given in Table 2.3. As stated before, by taking
K as 1 and 5/6, we could obtain Mindlin’s and Reissner’s theories ( which are first
order theories ). In Table 2.3 some extreme values of K are also considered in order to

observe the trends.

2.4.2 Laminated Plates

In this part of the study, the results are given for both symmetric and
unsymmetric bending as well as the membrane loading-( i.e., for the neutral - plane
tension ). For convenience, we take the neutral plane of the laminated plate as the

reference plane. In this case the corresponding boundary conditions are

fl(y)=No°)

b (y)=0,
(2.67)

for the membrane loading and
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f; (y)=0,

f2(y ) = Iwooa
(2.68)

for the bending case.

First a three-layer symmetric laminated plate is considered. This is a
simplified model for a sandwich plate and a “honeycomb” structure. The notation of

the plate is shown in Figure 2.2a.

Because of the nature of the plate theory used, the displacement components
u, v, the stress components ox,0y, Txy as well as the stress intensity factor will be
piecewise linear functions of z. As expected, while the displacement components are
continuous functions, the stress and stress intensity factor will have a discontinuity at
z = + hy/2, [ see ( 2.66 ) ] due to the nonhomogeneity of the laminated plate. Figures
2.3 and 2.4 show the effect of the thickness ratio a/h on the stress intensity factors at
z = h,;/2 of Material I and z = h/2, respectively. The results are given for different
material combinations with material I fixed as Material A and Material II being
Material A, Material B and other hypothetical isotropic material ( having a Young’s
modulus of 0.39, 3.9 and 390 GPA ). Figure 2.5 and 2.6 show the effect of the
thickness ratio a/h and ratio E,/E; on the stress intensity factor. Here both materials
are isotropic. Similar results are shown in Figures 2.7 and 2.8 with different h,/h,
ratios. From Figure 2.7 it may be observed that the variation in the stress intensity
factors for different ratios E,/E,; is relatively insignificant. This is expected because
with h; = 0.1 hy, the core material near the symmetry plane have very little influence
on the behavior of the plate when it is under bending only. On the other hand as
shown in Figure 2.8, the thin layers on the outside will have a much more significant

effect on the stress intensity factor.

A material of some considerable practical interest is a “honeycomb structure”
which can be modeled as a 3-layer symmetric plate with the following features:

( referring to Figure 2.2 a )
a.h; > h,,
b. E, > Eq,
c. for Material T the out-of-plane shear stiffnesses Gx; and Gy, are much
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greater than the in-plane shear stiffness ny.v
Figures 2.9 - 2.13 show the results for such a structure. Here, Material II is isotropic
having the elastic constants E, and v, = 0.3, and Material I is assumed to have the

properties E;, Gyy = » ¥1 = 0.3 and Gxz = Gyz = TT Gyy. The results given

sy
in these figures are rather self-explanatory. While Figure 2.9 shows the effect of the
thickness ratio a/h and TT on the stress intensity factors, Figures 2.10 and 2.11 show
such effects due to the variation of E,/E; and TT. The effect of h;/h, for various
values of TT and E,/E, is shown in Figures 2.12 and 2.13. It may be seen that for

h;/h, — 0 the isotropic result k/ky, = 0.74 is recovered.

As second example the bending and membrane loading of a two-layer
unsymmetric plate problem is considered. The notation used is shown in Figure 2.2 b.
Note that we choose the neutral plane of the plate as the reference plane, with o
being the vertical distance between the lower surface of the plate and the neutral

plane.

Figures 2.14 - 2.18 are results obtained for such two - layer plate, which are all

plotted as k,/kg v.s. a/h. Here a/h is the crack length and plate thickness ratio, kg =
0

o, ¥ a with o = —I}\‘—'-Ié—ﬁ when the plate is subjected to uniform bending moment M

at the infinity and ky = oy ¥a with ¢ = N ;:0 when the plate is under the
membrane load Ny = N °© only, and k, is mode I stress intensity factor at the upper
surface of the plate with z = h - cj. Figure 2.14 gives the results obtained for different
E,/E, values where both materials are isotropic and vy is equal to v,. The results
given are for uniform bending moment. It is interesting to note that in this problem
even though the singular integral equations are coupled; we obtain ¢y = 0 when the
plate is under the in-plane tension and u, = 0 when it is under bending. These are
quite similar to the uncoupled case. Figure 2.15 and 2.16 show the effect of v,/v,
ratio on the stress intensity factor in a composite plate under bending and membrane
loading respectively. It must be emphasized that for the membrane loading due to the
coupling the stress intensity factor is still a linear function of z despite the factor the
external force N “ is applied in the neutral plane of the plate. These results are quite
significant because if we use a plane elasticity approach to solve this kind of problem
it might give misleading results. Figures 2.17, 2.18 and 2.19 give the results for plates

consisting of two bonded orthotropic layers.
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In an attempt to determine the effect of the individual material constants on
the stress intensity factors for‘the two-layer plate, the bending stress intensity factors
for a/h = 1 and hy/h; = 1 are calculated. In these examples, Material I is fixed as
being an isotropic material in figure 2.20 or an orthotropic materials in Figures 2.21
and 2.22 and Material II is assumed to be a series of fictitious orthotropic materials
where in each case only one or two material constants are varied. Here Material 11
with the exception of the particular material constant that is varied, is assumed to be
“isotropic”. For example, in Figure 2.20 for the curve of R = G,3/ G;p Material I is
assumed to be isotropic with constants E(l) and vy = 0.3, whereas for the Material II
we assumed that

2 _ g (1) :

and
E(l)

Gi2= G2 =577 703)

and only G, is varied relative to the remaining constants. It should be pointed out
that in all cases, the stress intensity factor k, is a monotonically increasing or
decreasing function of R except for varying Gpp for which it seems to have a
maximum for some value of R > 1. Similar results were observed in homogeneous

orthotropic plates [ 22 .

Figures 2.23 - 2.26 show the results regarding the distributions of the stress
intensity factor along the plate thickness direction in the two-layer orthotropic plate,
where Material I is Material A and Material II being Material B. For convenience the

results given are k ( Z~ )/ kg v.s. 2~ /h, where

Z =12+ Cq,

sothat T2/ h=1and 7Z /h = 0 correspond the upper and lower surfaces of the
plate.

Figures 2.23 and 2.24 are results when the plate is subjected to uniform tension and
pure bending respectively with the thickness ratio h,/h; = 1. Notice that in Figure
2.24 the negative value of stress intensity factor, k, is due to the pure bending

moment loading. Figures 2.25 and 2.26 show similar results with hy/hy = 10. Tt is
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clearly shown that due to the nature of the plate theory used, the stress intensity
factors are linearly distributed along the thickness of the plate. In Figure 2.24 because
the Material A in layer I is “stiffer” than Material B in layer II, it is expected that
[k(0)| = 0.833 is larger than Ik(l)’ = 0.792. Similar trends may be find in other three

figures too.

Finally we consider two examples concerning unsymmetric plates that consist
of three layers subjected to both tension and bending. The geometry and the notation
used are shown in figure 2.2c. We use the same convention as in the two-layer case,

namely

MOO
kg=op,J¥a , op = h2/6 s

for the bending case, and

kg =0, Va , at=l};—i—,

for the tension case.

Figures 2.27 and 2.28 are the stress intensity factor distributions in materials having
the same Poisson’s ratio » = 0.3 and Figures 2.29 and 2.30 are the results for
materials similar to that considered in Figure 2.27 and 2.28 with different v,, v, and
vy. The same uncoupling features are observed as in the two - layer case. That is
when all v’s are same in isotropic materials, ¢x = 0 for the membrane loading and Ug
= 0 for bending. This uncoupling phenomenon disappears when the v’s are different.
It is expected that the coupling becomes more significant when all the materials are
orthotropic. In such cases it would be more appropriate to use a plate theory instead

of plane elasticity theory to solve the crack problem under membrane loading.
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Chapter 3. Stress Intensity Factor in Two-bonded
Orthotropic Layers Containing a Crack Perpendicular
to and on the Interface

3.1 INTRODUCTION

In modern engineering layered multimaterial systems have been widely used,
ranging from laminated composites to microelectronic devices. In structural analysis
and design of such systems, one of the most important considerations is the fracture
of individual layers. It would be very attractive to develop special types of designs
that improve the structural resistance to fracture failure. As one example of such
design practice one may mention the process of manufacturing laminated composites
in order to improve the structural resistance to unstable crack propagation by
strengthening the material in certain directions, choosing the laminates with different
material properties, and stacking the laminates in different sequences. All these
increasing use of modern technologies have generated new problems for the structural
design and failure analysis. Among the multitude of problems in this study we are
mainly interested in the fracture analysis of a mutilayered medium and specifically in

the influence of material properties on the fracture behavior of the system.

If one examines the evolution of typical fracture failure in layered structural
components, one may invariably trace the initial cause to a localized imperfection.
One of the common forms of such imperfections is the surface flaw which may have
the potential for growing into macroscopic cracks. Under cyclic loading and/or
adverse environmental effects a surface flaw may grow into a part-through surface
crack. Upon further application of the loads the surface crack may propagate
subcritically through the thickness of the first layer which, in some cases, may cause
the total failure of the system. In analyzing the subcritical growth of these surface
cracks as well as the cracks imbedded into individual homogeneous layers, it is now
generally accepted that the stress intensity factor can be used quite effectively as the
primary correlation parameter. In studying the fracture of multilayered materials the
basic mechanics problems is then the calculation of stress intensity factors along the
crack front for physically relevant external loads and crack geometries. To do this, a
mathematical model which may realistically take into account the geometrical and
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physical properties of the medium and the real mechanism of fracture is needed.
Because of mathematical difficulties, in recent studies the geometry and the material
properties have been considerably simplified by introducing certain two-dimensional or
axisymmetric approximations along with the material isotropy. In the early solutions
the medium was generally assumed to be infinite consisting of either semi-infinite
spaces with or without a layer in between, or periodically stacked laminates. F.or
example, the plane and axisymmetric problems for a medium which consists of two or
three different materials and which contains a crack perpendicular to the interfaces
may be found in [23-26). The layered composite which consists of periodically
arranged two dissimilar orthotropic bonded layers was considered in [27]. The effect of
the elastic properties and the thickness of the adhesive in bonded layered materials
was studied in [28]. Later, the plane problem, which is somewhat closer to the actual
problem, of two bonded layers containing cracks of various orientations and sizes was
studied in [29] and [ 30 ]. In that study the individual layers were considered as being
isotropic. Particularly in studying composites, the assumption clearly is not very

realistic.

In this study the plane elasticity problem of two-bonded orthotropic layers
containing a crack perpendicular to the interface is considered. It is assumed that the
crack is located in one of the two layers and in a principal plane of orthotropy. The
crack problem of a multi-layered medium can be treated as a two layer problem which
consists of the layer that contains the crack and a homogenized composite layer
representing the remaining part of the medium. Three different problems are studied:
the internal or embedded crack problem, the edge crack problem and the problem of a
crack terminating at the interface. A general formulation of the problems is given for
plane strain case with the material type 1. The singular behavior of the stress around
crack tip and at the bimaterial interface is studied. The resulting singular integral
equations are solved numerically and the stress intensity factors are calculated for
various crack geometries and various material combinations. The effect of different
material combinations and material orthotropy on the power of stress singularity for a

crack terminating at the interface is fully examined.
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3.2 THE FORMULATION OF THE PROBLEM

Consider a two-dimensional medium which is formed of two orthotropic
infinite layers having thicknesses h; and h, as shown in Figure 3.1. Assume the
layers are perfectly bonded along y=h; plane and contain a crack on the x=0 plane in
the first layer. Further assume that by proper superposition the problem is reduced to
a perturbation problem in which the crack surface tractions are the only external

loads.

3.2.1 Solution of Differential Equations

Let the coordinate systems be selected as in Figure 3.1 and let u(i), v(i),
(i=1,2) be the x and y components of the displacement vector in the layers. The
following differential equations which result from the plane theory of elasticity must

be solved for each layer under appropriate boundary and continuity conditions:

Py, 0% 5 9% _ |

ﬁl 6X2+ ay +B3 axay—oa (313‘)
%v 2y 8%u _
where

_ by _ bap
51 - —(—;Ty 1 ﬂ2 - ny ’

—_ b12
Bs=1 + m , (3.2a )
and [B] = [C]?

(3.2b)

75



and

_ - vxp v _ Ll-vyz vy
METE T s T
- . Vyx tvaxVyz  Uxy + Vzy Vxz
Ci2=¢1 =+ E =- ?
y
(3.32)
for plane strain, and
— . —_1
‘u= g 22 =g
Vyx Vxy
[ =Cc = - = -
12 = €21 io .
( 3.3b)

for plane stress.

Because of symmetry, the problem will be considered for 0 >x> oo only.

Let the solution of ( 3.1) be expressed in terms of the following Fourier

integrals:

. o0 v [o o} v
ot (x,y) = % Io f1( ' )(y,a)sina x da + 327, Jo gl( I )(x,'y)cos'y y dv

(3.4 a,b)
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For simplicity at the beginning we will ignore the index (i ). Note that f; and g ;

( i=1,2 ) are also functions of the material properties in each layer. By substituting

from

o [
u(x,y) =% J.o f;(y,a)sina x de

9 [ '
vi(x,y) = % Jo f5(y,o)cosa x da,

into the equilibrium ( 3.1 ), we obtain

ﬂl(-az)f1+f1”+ﬂ3f2'(-a)=0,

fz(-a2)+ﬂ2f2”+ﬁ3f1’(+a)=0.

Assuming the solution of ( 3.6 ) in the form

fy (v,a) = A(a) e ,

£, (v,a) = B(a) %,

we obtain the following characteristic equation:
' 4+ Bys?+ Bs =0,
where (4 and g are defined as:

2. -1
ﬁ4 = ﬂ3 ﬂﬂ12ﬂ2 y 35 =

RGNS

0<x< oo, 0<y< h,

(35)

(3.6)

(3.7)

(38)

(3.9)



The roots of ( 3.8 ) are

Sz 'ﬂ4 + N ﬁ42‘ 4 ﬂ5

- 3 — (3.10)
Defining
Be = (B> 485 (3.11)
we find
sp=wy tiwy= [(-Bet Be)/ 2 53 = -8 ,
sp=wstiwg= {(-B4 Be)/ 2 Sq = -85 , (3.12)

where w; and wy are assumed to be positive.

Thus, from (/3.6 ), ( 3.7 ) and ( 3.12 ) it can be shown that

f () = Ag(a) e 704 Aya)e "YU A(a) P 4 Ag(a)ye 277

7

f, (,0) = B7 [Ay(e) &% Ay(a) e " VY]

+8s [Az(a)e? ™. Ag(aye "),
8 3 4

(3.13a,b)
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where g, = Pas1 By = P352 (3.14)

—1'ﬂ2512, _1‘,3252 )
Similarly, substituting from
9 [
uy( x,y) = # JO g1(x,7)cosy y dv,
9 [®
V2(X,y) =% J’ 82(X17)Sin7 y d7 » 0<x< o0, 0<y< h,
0
(3.15)

into equilibrium equations ( 3.1 ) it maybe shown that
818" 78 + B318, =0,

82”'72ﬂ2g2+ﬂ3g1,(’7)=0- (3.16)

If we now let

g (x,7)=C(y)e 7,

g (x,7) =D(7) e, (3.17)

the characteristic equation becomes

m“-{—ﬂ m2+dl =0. (3.18)

From ( 3.18 ) it may be shown that
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m) = Jlﬂ_s J(-Bat Be)/ 2 my = -m; ,

m, = Jlﬁ—s J( - Ba- Be)/ 2 s m, =-my , ( Re (my, my) > 0).

Considering now the regularity conditions at x = oo, from ( 3.16 ), ( 3.17 ) and (3.19)

it may be seen that

- myXYy
3

- M4 X
g (x,7)=Ci(r)e "VT4 Cy(y) e

-mx -
g (xm)=-BsCy(ne 1 -Big Cyme 2,  (320a,b)

where

(3.21)

3.2.2 Displacements u{x,y) and v(x.y) for Material typeI:

Examining the following roots of the characteristic equation ( 3.6 )

51=Jﬂ—5m1=“"1+"w2=\]('ﬂ4+ﬂ6)/2 ’

s;= {Bs My=ws+iwg= |(-Bg Be)/2 (3.22)

it can be shown that s; and s, are either real or complex conjugates. We define

Materials type I and II as follows:
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Material type I :

sp= {Bs my= wp, wp=0,
52=J75_m2=w3, wg =0, (3.23)

Material type 11 :

sp= {fs my= wytiwy,

sz:Jﬂ—smzzw3+iw4 . (3.24)
In this study we will assume that the material is of type I. The results for type II

materials may be obtained with slight modification in the analysis. Note that s, and

s, are the roots with positive real part and g5 > 0. Defining now

Wi

B = 3 ﬂ = '__wi s
N { R (3.25)

K;=(A;- Ay}, Ko =(A; + Ay

K3=(A3'A4), K4=(A3+ A4),
(3.26)

from ( 3.4 ), ( 3.13 ) and ( 3.20 ) it may be shown that

u(xy) = % J':o [ K;(a)sinh(wyay) + K,(a)cosh(w,ay) + K3(a)sinh(wzay)

+ K4(e)cosh(wzay)] sina x da
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+ 3 [ 1eiexp(—wy 7%/ [B) + Col) exp(—wy-yox/ 55) cosy y d

v(xy) = 2 I:o [87 Ky(a) sinh(wyay) + 7K, (a)cosh(wyay) + BeKq(a)sinh(wzay)
+BgK3(a)cosh(way)] cosaxda
-3 [ 8o Colmexp(—wyrx/ [Bs) + BroCalnlexp(~ws 1/ [B3 lsinyy 47 ,
(3.27a,b)

where Ki(a), Ky(a), K3(a), K4(a), Ci(7) and C,(7) are the unknown functions to

be determined from the boundary conditions.

3.2.3 Stress Field:

Using the following stress-strain and stress-displacement relations:

Txx = bll €y + b12 fy » ( 3.28 )
b

T xx 12

= = € + €

bll X bll y

(3.29)
Oyy = byp ex + by ey
(3.30)
o
=,b,1,2 du +@V .
b, ox T oy o)
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ny=ny7xy=ny( %“i"%;;‘)

(3.32)
_ _Ou v
Gy 79T ox Toy
(3.33)
where
[B] = [C]? (3.34)

and c;; are defined in ( 3.3 ),

from ( 3.17 ) we obtain the stress as follows:

)
bln Oxx = % Jo [ X; Ky(a)sinh(w ay) + Ay K,(a)cosh(w;ay)
+ A, Kj(a)sinh(wzay) + Az K4(a)cosh(wzay)] o cosa x da
- :
-2 Jo [As Cy v exp(—wy-v-x/{Bs) + Ay Co7 exp(—wy-7-x/{#s) cosy ¥ dv

( 3.35)

o)
bi’z oy = % ]0 [ As Ky(a)sinh(w;ay) + Ag K,(a)cosh(w;ay)

+ Ag K3(a)sinh(wzay) + Ag K4(a)cosh(wzay)] « cosa x da

2
T

o0
[%° D ©4 7 exp(—wy-7:x/ [Bs) + dg g exp(—wy-7x/ {Fe) cos7 ¥ 41

( 3.36)
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[ o)
et 2 L [ Mg Ky(a)cosh(w,ay) + Ag Ky(a)sinh(w,ay)

+ A0 K3(@)cosh(wzay) + A g Ky(a)sinh(wzay)] a sina x da

9 [
T Jo [A11 Clexp(—w1-7-x/Jﬁ5) + A5 Gy exp(—wl-‘y-x/ﬁg) 7 siny y dv

(3.37)

where

b b
A3 = By + By bif A= Bys + Bo ﬁ ,

_ by, ' _ by
'\5—522'1'57“’1’ Ae—bzz“‘ﬁa“s,
b b
M=t Bt Be s A= P+ ;
7 by, ~11 9 8= b, B2 Bio
Ag =wy- By Alo=w3 - PBg ,

M1=1-89817 v Aa=1-P108;, -

(3.38)
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3.3 THE INTEGRAL EQUATION

Using the condition that oyxy must vanish for x = 0,- which follows from the

assumed symmetry, from ( 3.37 ) we obtain

— A12 '
Cl—- XI—IC2- (3-39)

Defining the new unknown function

%—(O»y)z(ﬁl(}')a y €L,
=0, yel', (3.40)

where (L + L') = (0, h; ), L refers to the crack,
from ( 3.27a ) for layer 1, we find

%J:o(01+02)(-7)sin7yd7=¢1(y) . (3.41)

Inverting the Fourier integral, from ( 3.39 ) - ( 3.41 ) it follows that

. b .

Cr=Aa b | 6y(t)sinytdt =23 _ $1(t) siny 1t
1 [ ; 1 [b :

Cr=M3y ¢,(t) siny t dt = Ay5 7, ¢,(t) siny tdt ,

(3.42)
where
A A
Mg = 11 Aig =- 12 25 - 3.43
EE W W 14 X, 13 ( )
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We now use u, v, 0y, 0Oyy and oyxy to express the displacement and stress
components in the first layer (that contains the cracks) and u*, v*, o™, oyy* and
axy* in the second layer. Then, referring to Figure 1, We have the following boundary

and continuity conditions:

Oyy (O,X):O ] Oxy (O,X) =0 ,
Uyy* (h2,x) = 0 s ny* (hz, X ) = 0 H
(344a-d)
u(h;,x)=u*"(0x), v(hy,x)=v*(0x),
ayy(hl,x ) = o'yy* ( O,X ) N ny (hl,x ) = ny* ( O,X ) .
(345a-4d)

We observe that the displacement and stress expressions for layers 1 and 2 contain
nine unknowns, K;, K,, K3, K, K;*, K,*, K3*, K4* and  ¢,(t) . Using the eight
boundary and continuity conditions ( 3.44 ) and ( 3.45 ) we can obtain K; and K;*
(i=1,4) in terms of the unknown ¢;. The function ¢,(t) can then be obtained from

the following mixed boundary condition:

oxx (0,y)=-p(y), vye€L

u (0,y) = 0, yell
( 3.46 a,b)

By substituting from ( 3.36 ) into ( 3.44 a) and by inverting the Fourier

integral, we find
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oo oo -
['\5K2+A6K4]°‘=‘72?‘[ J [ A7 Cye Py
0 [}

- X
+ Ag Coe Prz7 ]

¥ cos vy cosyx dy dx.
(347)

After evaluating the integrals from ( 3.47 ) and ( 3.42 ) it may be shown that

[p3K2+p4K4]a=[-2Bse-a/ﬂnt-2B6 é'“/ﬂ”t] F, ( 3.48)
where F = J’ L ¢, (t) dt, (3.49)
and see Appendix II for p; and p, and Bg and Bg.
Similarly, from ( 3.44b ) and ( 3.37 ) we obtain

[ps Ky + pg K3 ] @ = 0. (3.50)

By using again the general expressions ( 3.36 ) and ( 3.37 ), for layer 2 from the
boundary conditions ( 3.44 ¢ ) and ( 3.44 d ) we find

[ p3 * sinh (w;* @ hy ) Ki* + p3 * cosh ((w;* o« h, ) Ky*

4 pg *sinh (w3* ahy ) Kg* + pg *cosh (w3* ahy )K" Ja=0,

[ pg * cosh ((w;* ah, ) Ky* + pg * sinh (w;* e hy ) KoF
+ pg * cosh (w3* ahy ) K3* + pg * sinh (w3* ahy )Ky*Ja=0.
(351a,b)
where the quantities with the superscript * are those in layer II having the same

expressions with the quantities without * in layer I. For example, w,* is the

characteristic root for the material in layer II with the same expression as in ( 3.12 ).
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In a similar way, by substituting from the general displacement expressions
( 3.27 ) into the continuity conditions ( 3.45 ) and by evaluating the related integrals

we obtain

K, sinh(w;a h;) + K, cosh(w;a h;) + K5 sinh(wza h;) + K,cosh(wza h,)

-Kp* - Ko* = ( - =) [ Byl exp( - (hy-t) o/Byy) - exp (- (hy +t) o/fy;)]

+ B[ exp( - (hy-t) @/By5) -exp (- (hy +t) a/B1p)] | F

[ p1 K; cosh(w;a hy) + p1 K, sinh(wya hy) + poK3 cosh(wza hy)
+ poKysinh(wsa hy) - pl*KI* - P Kt
= ( - =) [Bslexp( - (hyt) a/Byy) - exp (- (by + 1) a/Byy)]

+ Byl exp( - (hyt) @/By5) - exp (- (hy + 1) a/B1r)] ] F,

[p3K, sinh(w;a h;) 4+ p3K, cosh(wja hy) + p4K;3 sinh(wza hy)
+ paKycosh(wga hy) - po103 Ko™ - po1ps"Ky*
= ( - & ) [ Bl exp( - (hy-t) a/Byy) - exp (- (hy +t) o/ Byy)]

+ Bg[ exp( - (hy-t) @/By13) - exp (- (hy +t) ¢/B12)] ] F,

[ ps K, cosh(wya h;) 4+ pgK, sinh(w,a hy) + pgK3 cosh(wza hy)
+ peKysinh(wga hy) - poaps*K ™ - poaps*K3*
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= ( -1 ) [ Byl exp( - (hy-t) &/Byy) - exp (- (hy +t) a/B1y)]

+ Bg[ exp( - (hy-t) a/By,) - exp (- (hy + t) o/By5)] ] F,

(352a-d)

where

b G
Por = bzz* ) Po2 = "(';LL* . (3.53)

and see Appendix II for expressions p; (i = 1,6 ) and B, (i=1,8).

In summary, the system of equations for the unknowns K;(«) and K*(a), (i =

1,.. ,4) may be expressed as follows:

aPK= Ff, (3.54)
P:(Pij)’
]T

9

f:flexp[~(a/ﬂ11)t]+fzeXp[-(0/ﬂ12)t]
+fyexp [ (af Byy) (hy-t) )+ faexp[- (af Byp) (hy-t)]

+ fg exp [- (a/ Byy) (hy +t )]+ fg exp [- (af By5) (by +t)],

(3.55)
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[0 ps 0 pa O 0 0 0
Ps 0 Pe 0 0 0 0 0
0 0 0 0 P3s  P3g P37z Pgg
Ps; Pso Psz Pgs 0 -1 0 -1
Pgy Pga Pgs Pgs -, O - Pz* 0
Py Pqa Py Pyy 0 Pze O Pig
| Psi Pgz  Pgz Pgg  Pgs 0 Pgr 0 |
where
Py = p3* sinh ( wl* a h, ), Py = p3* cosh ( ""’1* a h, ),
P37 = pg* sinh (w3* a hy, ), P3g = p4* cosh (w3* e hy ),
Pgs = pg* cosh (w;* a hy ), P4 = pg* sinh (w;* a hy ),
Py7 = ps* cosh ( w3* a h, ), P4g = /’6* sinh ( w3* a h, ),

P53 = Sinh ( W3 e 4 hl ), P54 = Cosh ( U3 [4 4 hl ),

Pgy = pycosh (w; ahy ), Pgy,=pysinh(w;ah)),

Pgz = ppcosh (w3 ah; ), Pgy = p,sinh(wzah,),

P;, = p3sinh (w; ah; ), Py =p3cosh(w; ah,;),

P;3 = pgsinh (w3 ahy), Pyy=p4cosh(wzah;),
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Pgy = pg cosh ( wy o hy )Pgy = pg sinh (w; a hy ),

Pg3 = pg cosh (w3 o hy YPgs = pg sinh (w3 a hy ),

Pye =- o1 P3"> Prg = -po1 Pa”s
Pgs = - po2 P5 s Pg7 = -po2 Pe
(3.56)
f,= [2Bg 0 o o o o 0 0],
f,= [2Bg O o o o o0 o0 0],
f,b=[0 0 0 0 -B, -B, Bg -Bg ',
fe= [0 0 0 0 B, By -Bg By 1T,
fe= [0 0 O 0 B, B, -Bg Bgl'.
(3.57)

After determining K; and K*, (i = 1,..,4) by solving ( 3.54 ) in terms of ¢,
(v), this remaining unknown function may be obtained from the mixed boundary
conditions ( 3.46 ). By substituting from ( 3.35 ) into ( 3.46 a), using ( 3.42 ), and
from ( 3.46 b) by observing that ¢; (y) = 0 on L' we find

91



o ¢]
%"ﬁ%,“=Jo[hxﬂ@mmwmo+th®w¢wmw

+ A5 K3(a)sinh(wzay) + A, Ky(a)cos(wzay)] o cosa x da

+B11JL¢1(t)dt(t_ly+t.{l_y)="7§r-b—lllp(}'), yeL.

Finally, assuming that L. = ( a, b ) or the crack is located along x = 0, a<

y<b, the integral equation ( 3.58 ) may be expressed in the following standard form:

b1 _ T 1
[Id+ knolama =55 - ). a<y<b

(3.59)

where the Fredholm kernel, k( y, t), is defined as:

Joo [ E, - afBq,t n }'32 N afBiot

0

k(yit) = 5 + Bln

LR CED IR VMR

-af/Byy(hy +t) +Ege af/B1a(hy +t)

+ Ege ] dex

(3.60)

where the E; (i = 1, 6) are known functions of K;, K;* ( i =1, 4) which may be
obtained by solving the equations (3.54).
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From the definition of the function ¢; given by ( 3.40 ) it is clear that for an
imbedded crack the solution of the integral equation ( 3.59 ) must satisfy the

following singlevaluedness condition:

Jb é1(t) dt = 0.. (3.61)
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3.4 THE SINGULARITY AT THE CRACK TIP

It is well known that the stress field around a crack tip is proportional to r’3,
where 1 is a small distance from the crack tip at which we measure the stress field,
and s is called the power of singularity which should be between zero and one, i.e. 0<
s < 1. If s is less than zero, the stress is bounded as r — 0 and there is no singularity
at the crack tip. If s is greater than one, the strain energy density is unbounded as r

— 0, which is physically impossible.

The value of singularity s is dependent on the crack configuration as well as
material properties. In this work, three crack configurations will be studied, namely:

(referring to Figure 3.1)
i) embedded crack, a>0, b<h,,
i) edge crack, a= 0, b<h,,

iii) crack terminating at the interface, a> 0, b=h, .

For each crack configuration, the singularity of the stress state around the crack tip
or the irregular points a and b may be examined by using the function theoretic

method described in [31], [32] and [33].

3.4.1 Embedded Crack

For the case of a crack embedded in a homogeneous material, the only

singular term in the integral equation ( 3.32 ) is the dominant term t-ly and the
remaining kernels are bounded. The singular integral equations can thus be written in

the form:

b
J ¢4(t) dt _+_B"I*_=..._""_1._l]TI p(y), a>y>b.

where B.T. corresponds to the bounded term.

To examine the behavior of the unknown function ¢,(t) around the irregular
points a and b, following Muskhelishvili [31], we assume that the unknown function ¢,

may be expressed as
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g1(t)

6, (1) = 5 = E1(t) Wy(t)
(t-a)% (b-t)

(3.63)

where g,(t) satisfies a Holder condition in closed interval a< t < b and g;(a) # 0,
g,(b) # 0. Also a, B are the singularities at the irregular points which should satisfy
the condition 0 < Re (a@,8) < 1, and W,(t) is any definite branch which varies

continuously on the interval a<t<b.

Define the following sectionally holomorphic function
b ¢ (t
Fl(z)=—}r—Ja tl—(z) dt , (3.64)
substituting equation ( 3.63 ) into equation ( 3.64 ) we obtain

b gy(t) exp (i 7 f)
2 (t-a)® (t-b)° (t-2)

F, (z)=-},—J dt . (3.65)
Following Muskhelishvili, equation ( 3.65 ) can be written

gi(a)exp (i 7 a)
(b-a)ﬂ (z-a)%sin(7a)

Fi(z)= +

g1(b)
(b-a)® (z-b)ﬁsin(‘n’ﬂ)

+ + Foq(2) . (3.66)

Fo; (2) is bounded everywhere except possibly at the end points a, b, where it has the

following behavior

Cy
Pk °’
|z- ekl

|Foy (2)] < k=1,2, (3.67)

95



e, =a, e, =D>b, p; < Re(a), p, < Re(F)and e, p, are real constants, that is,

Fg; (z) has singularities weaken than o, 3.

Using the Plemelj formula [31]

from ( 3.66 ) it follows that

J~b $1(t) gt = g1(a) cot ( 7 a)
a bV (b-a)’ (y-2)®

g;(b) cot (73)
(b-a)* (b-y)”

+ Fpo(y) . ' (3.69)

Substituting equation ( 3.69 ) into ( 3.62 ) we find

gi(a) cot (7 a)  gy(b) cot (n5)
b-2a)® (ya)®  (b-a)® (by)’

= (v), (3.70)

where 9, (y) contain all the bounded functions.

By multiplying equation ( 3.70 ) first by ( y - a )* and letting y — a, and
then by (b-y)ﬂ and letting y — b, we obtain the following characteristic equations

for a, B,

g.(a) cot ( 7 a) —0
(b-a)"

, or cot (ra)=0,

g1(b) cot ( 7 B) ~0,

(b-2)® or cot (m 8) =0 . (3.71a,b)
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The acceptable roots of these equations are a = 1-2—, g = %— which are the well

known results in the crack problems. Hence, the fundamental function of the singular

integral equation is

W (t) = 1 . 3.72
®) G2 (b2 ( )

Therefore as long as we have internal cracks, the power of singularity will be 1/2.

3.4.2 Edge Crack

This is the case that a = 0 and b<h;. Now the crack is an edge crack with

one crack tip in the medium and the other crack tip going to the boundary.

For this case the integrand of Fredholm kernel, k(y,t) expressed in (3.60),1is
no longer bounded as a— oo . Therefore the singular part of the kernel must be

separated and evaluated in closed form. We can write the kernel k( y, t) in two parts.

k( Y, t‘) = kS (y’ t) + kb (y’ t‘)' ( 3.73 )

where kg is the singular part and ky, is the bounded part of k.

The singular integral equation can then be written as

b b
JOH%+kdyJ)Mﬂﬂm+4ok“yJ)¢ﬂﬂM=-7%ﬁ—ﬁ;Mﬂ

0<y<b. (3.74)

Following the same function theoretic analysis as in the embedded crack case,
the only acceptable roots for the characteristic equation are found to be a = 0 and S8
= 1/2 (see [34] for details ), that is, for the crack going to the free boundary, there is

no singularity at the crack tip. Therefor the fundamental function of the singular
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integral equation is

W(t) = —L1 . 3.75
(t) (b i t)1/2 ( )

3.4.3 Crack Terminating at the Interface

This is the case that a> 0 and b = h;. The problem of interest here is the
singularity at the crack tip y = h;. Thus, without any loss in generality we assume a
> 0 and b = h; for the analysis. The similar problem has been studied by Delale in
[27].

For this case the integrand of Fredholm kernel, k ( y, t ), expressed in (3.59),
is no longer bounded as « — oo when y — h; and t — h,, at the same time.
Therefore, to study the singular behavior at the interface and to make the kernel
numerically integrable, the singular part of the kernel must be separated and

evaluated in the closed form. Again, we express the kernel k (y, t ) as

k(y,t) =ks (v, t) + ky (v, t)- (3.76)

where kg is the singular part and k;, is the bounded part.
To make the manipulations manageable without any loss in accuracy, we obtain the
singular part from the symmetric crack problem shown in figure 3.2. In this case, the

symmetry about the y axis is maintained and we have
u(x,y)=u(x-y),
vix,y)=-v(x,-y) (3.77)
Thus, it is sufficient to consider the problem for y > 0 only. Observing the general

solution of the displacement u ( x, y ) as expressed in { 3.27 ), the coefficients of the

98



nosymmetric terms sine and hyperbolic sine must be zero, i.e. K; = 0, K3 =0, Kl* =
0 and K3* = 0, which makes the analysis considerably simpler and makes it possible

to obtain the closed form expression of singular kernel kg (y, t ).

Following the same procedure described in [27], it can be shown that ks( y, t )

can be expressed as follows:

ks = kgy + kgy + kg3 + kgg

wy hy + (hy-t)/Byy
1 (wy hy + (hy - £)/811)° - (wy y)?

wy hy + (hy-t)/8y5
12 (wy hy + (hy - £)/B15)? - (w; ¥)?

+ P

Wa hl + (hl' t )/ﬁll
3 (w3 hy 4 (hy - £)/811)? - (ws ¥)?

+ P

w3 hy + (hy-t)/By15 3.78
Y (wg by + (hy - )/B812)% - (w3 ¥)? ( )

+P

where Py; (i = 1, 4 ) are the expressions of material constants which are obtained

from the asymptotic analysis.

The governing singular integral equation then becomes:

b 1 1 Jb 1

Ja[t'y+ Bll ks(yat)]¢1(t) dt+ a B11 kb(y,t) ¢1(t) dt
= . T 1

- 2Bll b11 P(Y)

0<y<b,

ky (v,t)=k(y,t)-ks(y,t) (3.79)

We again define
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g ()
(t-2)"? (hy- 1)

b (1) = 7 =8 () Wi(0). (3.80)

Here the singularity 8 will be different from 1/2 because of the additional singular
kernel k¢(y,t ).

To examine the singularity (8, we use the symmetric case as the illustration.

Referring to Fig. 3.2 the singular integral equation may be expressed as

1 (M1 1 =
—% J"'H [ﬁ + B, ks (y,t )] #,(t) dt = bounded terms .

S h<y<h (381)

Following Muskhelishvili, the unknown function ¢,( t) can be written

__F(@®
$; () ——————«—(hli v (3.82)

where F(t) is bounded and Holder - continuous in the interval |t |< h;, and 0< Re

(8) <.

Define the sectionally holomophic function:

® () = L [P 41(t) dt = L hy Fy(t) exp(i 7 5) dt |
® = J'hl bz J'hl (t-hy)? ¢ + b)) (t-2)

(383a)
Then, the equation ( 3.83 a ) can be written as [31]

Fi(-hy)exp(imy) ) F, ( hy)
(2 hl)ﬁ sin (7 B8) (z + hl)'B (2 hl)ﬂ sin (x 8) (z-h

¢ (2) = 7+ % (2)
)

(3.83b)
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where @, (z) is bounded everywhere except at the end points + h,, where it has the

following behavior

Fy(2h)

B Re (8g) < Re (8) -
lz+ h|"©

I 2 (Z)| <
(384)

When z = y is on the cut, using Plemelj formula:

Fy(-h)ocot (xf)  Fy( hy)cot(mp)

3 (y) = + ®* (v)
(2 hl)ﬂ (h+y )ﬂ (2 hl)ﬁ (hy- .V)ﬂ

¥l < by (385)

Now consider the following integral

h
L= 4 [ ko) awa

(h, Py wy hy + (hy- t)/Byy
J-h (wy by + (hy - £)/B11)% - (w1 ¥)?

$1(t) dt

1
(3

_ 1 (hy B11P1 ¢é1(t)

= 7'_-h1( 2 )t-[h1+ﬂ11w1(h1'}’)] a
1 h, ) 811P11 é5(t)

+ ”J'“x( 2 )t'[h1+ﬂ11‘”1(h1+3’)] &

(3.86a)

101



from ( 3.83 a)

L= - th1( ) ﬂu;’u ) Fyltyexp (in §) dt
" (th)” (64 5)P (t- by + By 0y (hy-y)
h P F i
+ L J-hll( . 3112 11 Fi(t)exp (i B 7) dt |

(thy)? (¢ +8y)P (t- by + Byg wy (By +3)))

(3.86b)

when z= h; + B;; w; (h; - y) and z= h; + By, w; (h; + y) are outside the

branch cut we have

I = . F,(-hy)
1= 7.
(2 hy)” sin (7 B) [ By; w; (hy +¥)]

ﬁ + Ql* (Y)

ﬂ : Fl('hl) ﬂ + ta(y),
(2hy)" sin (7 B) [ A1y w; (hy -¥))"

(3.83¢)

where @, (y) and ®,* (v) are similar to ®,* (y) in equation ( 3.83 b ).

Observing that Fy (y) =- F; (-y ), the integration I; can be written as :
B11P F h,)
Il - ( 112 11 ) 1 ( 1 1

[
@b sin (7 8) (B 0,0  (hy-y)P
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(387a)

Following the same procedure, we can obtain the following integrations:

h
L= 4 [0 ke (vt) e

- ( 61221)12 ) Fl ( hl) [ 1
@) sin (7 B) (Brpw )’ (hy-¥)

+ 1 1,
(hy +¥ )ﬂ
(3.87b)
h
L= 4[5 ks (nt) e
= B11P13 ) F, (hy) 1
2

[
@hPsin(x 8) (B ws )P (hy-y)’

(3.87¢)

h
L= + J_hll keg (¥, t) ¢y(t) dt

ﬁ12P14 ) F1 ( h1) [ 1
@h)P sin (7 8) (Braws )’  (By-y)

=( 3
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+ —1— 1.
(hl +Y)ﬂ
(3.87d)

Substituting I, , I, , I3, I and ( 3.85 ) into ( 3.81 ) and letting y— h; and noting
that F; ( h; ) # 0, the characteristic equation for 8 becomes:

-2cos (7 B) + By, Pu-———l,—ﬁ + 812 P12'+f'
(811 wy ) (B12 wr )
B11 P13—“1_'—5 + B Pya———> =0.
(811 w3) (812 wq )
(3.88)

This is the same equation found in [ 27 ]. Choosing the orthotropic elastic constants
close to isotropic constants numerically we find the same singularity power computed
in [ 23 ] and [ 30 ]. The characteristic equation ( 3.88 ) can be solved numerically to
obtain 3. For practical orthotropic materials equation ( 3.88 ) has only one root
between 0 and 1. If material II is stiffer than material I, the root will be less than 1/2.

But if material I is stiffer than material II, then the root will be greater than 1/2.

For the two bonded strip problem, when a > 0 and b = h;, the fundamental

function is

W, (t) = 1

(t- a)1/2 (hl B t)ﬁ , (3.89)

where 8 is the root of equation ( 3.88 ).
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3.5 SOLUTION OF THE SINGULAR INTEGRAL EQUATION AND THE STRESS
INTENSITY FACTOR

The solution of the problem depends on the unknown density function ¢,
which can be obtained by solving the singular integral equation ( 3.59 ) numerically
using any one of the known techniques [ 35 ], [ 33 ] . In this work the quadrature

method described in [ 33 ] is used. To solve the integral equation:

b, 1 _ 1
Prgd +rorame =55 35 o0,

a<y<b,

(3.90)

we first normalize the interval ( a, b ) by defining:

t:béar+ b—;—a, (a<t<b,-1<r<1)
yzbéas+ b;—a’ (a§y<b,-1<s<1)
¢ (t)=F(r)

b2 k(y,t)=k(rs),

e 1
Y SN S = 5 ).

(391a-¢e)

Equation { 3.90 ) may then be expressed as

105



fl[r%-kk(r,s)]F(r)dr:p(s) 1<s<1. (3.92)

The unique solution of the singular integral equation ( 3.92 ) can be obtained for
given crack configuration. Three typical crack geometries will be investigated

separately in the following subsections.

3.5.1 Embedded Crack

In this case the solution of the singular integral equation ( 3.92 ) will be

obtained under the single - valuedness condition
1
J F(r)dr =0. (3.93)
-1

Since F(r) has a power singularity 1/2 at the end points the solution will be sought in

the form
F(r) =2 (3.94)
1-r2
where f( r) is Holder continuous in the interval -1 <r < 1.

Following the procedure described in [ 33 ] we get the system as follows

n-1
LK (51 ) f(r) + Y. K* (s, 1)) £(r;) +4- K* (s, 1) £(rn)
1=2
=17l p(s), (k=1,..,n1),

(3.95)

and

n-1
T+ 3 ) g ) =0 (3.96)
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where

K*(s,r)=—ig +k(r,5),

r; = cos ( ln—%l ), i=1,..,n
s = cos ( 22111"_'11 ), k=1..,n1l ) (397a-c)

From ( 3.95 ) and ( 3.96 ) n unknowns f( r; ), i = 1,...n can be solved.

3.5.2 Edge Crack

For the case of an edge crack the singular integral equation (3.92) will be the
same but the single - valuedness condition (3.93) for the displacement will not be
valid anymore. The unknown function F(r) will have a 1/2 power singularity at one

end and no singularity at the other.

Considering an edge crack a = 0, F(r) will be singular only for r = 1.

Therefore in (3.94) (1 + 1) 1/2 i included with the extra condition that
f(-1)=1(rp)=0. ' (3.98)

Given this condition the number of unknown is reduced to n - 1 and using

equations ( 3.95 ), f(r;),(i=1,..,n-1) can be easily solved.

3.5.3 Crack Terminating at the Interface

For the case in which a > 0, b = h,, the singularity at the end points are a =
1/2 and B, where 3 is obtained from equation ( 3.88 ). Therefor the solution will be

sought in the form
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f( 1)
F(r)= . (3.99)
1+0) Y2 (1.0

Again, the single - valuedness condition will be

J._ll F(r)dr =0 .

(3.100)
Following [33], we obtain:
n
> K (sor )W) i) =p(s),
i=1
k=1,..,n1, (3.101)
and
n
Y W(r)f(r)=0, (3.102)
i=1
where
Pn(_1/2'-ﬁ)(ri)=0v i=1le,n,
p, (Y218 (=, k=1.,0-1, (3.103a,b)

and W ( r ) is the weight of the Jacobi polynomials

Pn('1/2| 'ﬁ) (r).
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Solving the n x n system of linear equations, the n unknowns f () (i=1,..,n),

can be obtained.

3.5.4 The Stress Intensity Factors

In this problem we are mostly interested in the computation of the stress

intensity factors which may be expressed in terms of the density function F ().

For the embedded crack where 0 < a < b < h; the stress intensity factors are

defined as follows:
K(a) = Lim, {2(¥) ox(03)

K(b)= Limb JQ(Y‘b) ox( 0,y) - (3.104 a, b)
y—)
Using the above definition and as described in [ 34 ] we obtain:

K(a)=2By by, Pim,, {2(a - ¥) ox(0)

— 2By, by, £(-1) (B9

K(b)=-2By by Lim, {2(b - y) ox( 0.y)
1——)
=-2By; by, £(1) {(b-2)/2,
(3.105a,b)
where

2p
Byy by = T4k’

when the material is isotropic.
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For the case of an edge crack ( a = 0 ) the stress intensity factor becomes

For a crack terminating at the interface, the stress intensity factor at b = h; can be

obtained from simplified symmetric crack problem (see Figure 3.2), described in

subsection 3.4.3, when a = h,;, we have

—d =2 oo[A*k(a)cosh(w*a )
by * XX T, 1 B2 1 2Y2

11
+ A* K *(a) cosh(wz*e ¥2) ] o cosa x do
: 1 «_ 2 [* * hiw.*
Lim  Oxx =% [ A" Ky(a)cosh(w,*a y,)
x—0 b11 0

+ A" K *(a) cosh(wz*a ¥2) ] a da
hl *
= -hlks (yst)éy (t)dt (38.107)

where, the quantities with x represent the corresponding quantities in the second layer

and k¢* is as follows ( see [27] for details )

ke® = ko1™ + kep* + kg3 + kg

—p.* wi* hy + (hy-t)/By,y
11 x 2 * 2
(wy™ hy + (hy - £)/811)° - (wy* ¥,)

wi* hy + (hy-t)/By5

+Prp’ * 2 * o 2
(w," hy + (hy - t)/B12)° - (w" ¥5)
+ Py5* ws' by + (hy- t)/8,
(“’3* hy + (hy - t)/ﬂn)z - (“":«3’Ik YQ)2
+ Pm* “’3* hy 4+ (hy-t)/By5 )

(“’3* hy + (hy - t)/ﬂ12)2 - (w3* }’2)2 '

(3.108)

110



Defining

k( h,) =yLimh 2 ﬁ(>’2 + hy ¥ axt(0y), (3.109 a)
—- Nz

and following a procedure similar to that used in obtaining ( 3.86 ), the stress

intensity factor at the crack tip h, is found to be

k(h; )= By;*by,* £(1) L

hlﬂ sinm
x { ﬁ P *__;___ P * 1
11 P11 . + B12 Py Y
Bi1wy ) (B12 w1™)
+ Bn Pla*——l—j + B12 P1a” N
By w3 ) (B2 wg™ )
(3.109b)

111



3.6 RESULTS AND DISCUSSION

The problem is solved numerically for three particular crack configurations
which are, referring to Figure 3.1, the embedded crack ( 0<a<b<h, ), the edge crack
( a=0, b<h,) and the crack terminating at the interface (a=0, b=h;). The results
refering to the stress intensity factors are shown in Figures 3.3-3.7 and Table 3.3.

Generally the results presented in these figures and the table are self-explanatory.

The results given in this study are obtained for self equilibrating crack surface
tractions. If the external loads are applied to the layered material at locations
sufficiently far from the region of cracks, the crack surface tractions in the
perturbation problem would be uniform. For example, if the medium is loaded in
tension parallel to the x - axis away from the crack region the crack surface tractions

are constant and are related by

1- v VY 1 - Vyz2 Vax2
1o, = —Yx2Va2 3.110
x1 ! Ex2 2 ( )

for plane strain and

D P2
— , 3. 111
x1 Ex2 : ( )

for plane stress. Here the subscripts 1 stands for the properties in material I and 2 for

material II. In this study only plane strain case is considered.

To investigate the effect of orthotropic material properties on stress intensity
factor in the cracked plane, we first rewrite the singular integral equation ( 3.90 ) in

the following form:
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b
1 + Kyl aw =Tk p),
. a<y<b,
(3.112)

fu
here [Jl* =2 Bll bll’ ¢1(y) = '5'}71 ( 0’ y ) ]

and p(y) is the self equilibrating crack surface traction in material I, and the subscript

1 again refers to the material I. -

The physical meaning of u*

revealed in the following relationship ( see [ 36])

1 . k12,

G
2 p

here G is the energy release rate, and k; is the stress
crack.

For isotropic material p* is given as:

in this general form of a crack problem is

(3.113)

intensity factor for mode I

ut = 14+” , where «=3-4v for plane strain,
and K = :13 :i-VV for plane strain,
ut = —%—, for plane stress,
p* = 201 -EV2 ) , for plane strain,
(3114 a)
and for orthotropic materials

where by, is defined in
113

3.2 ) and B,, in Appendix II. It can be seen that u*
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somehow a measurement of material orthotropy in the crack problem. Greater u*

stands for “stiffer” material.

Table 3.1 shows the different elastic constants used throughout the analysis.
Materials 1 and 2 are orthotropic which are fiber- reinforced composite laminates,
Note that material 2 is the same as material 1, except that the axes are rotated 90°
about the z axis. Materials 3, 4 and 5 are isotropic. Generally speaking, material 3 is
steel, 4 is zirconia and 5 is Alumina, both 4 and 5 are ceramics. Table 3.2 shows the
material pairs A to I for which extensive numerical results are given. Choosing the
same materials and letting a, b, h, or h, go to proper limits we recover all the special

cases considered in [ 23 ], [ 30 ] and [ 34 ].

Figure 3.3 shows the stress intensity factors in two-orthotropic bonded layers
with an embedded crack of half length 1 = b—'Q-Q— = };—1 . Note that as the crack tip
b approaches the interface ( i. e., as ¢/1 — 3 ) ky, tends to zero for u,* > y;* and to
infinity for u,* < ”1*' This well - known behavior is due to the fact that for b = hy
the power of the stress singularity f is less than 0.5 for p,* > p,* and greater
than 0.5if py* < py* . For these cases, the definition of the stress intensity factors
are given by equation (3.104). For the material combinations used in this figure g =
0.520 for pair A and 8 = 0.481 for pair B. Also note that as the crack tip approaches

the free boundary as expected K, tends to infinity.

Stress intensity factors for an edge crack in two-orthotropic layers and two-
isotropic layers are shown in Figures 3.4 and 3.5. In these cases too note that as the
crack tip b approaches the interface k,, tends to zero for p,* > p;* and to infinity
for  py* < p;* . Also note that as the crack length decreases the stress intensity
factor approaches 1.1215 for isotropic material in Figure 3.5 and 1.101 for orthotropic
material in Figure 3.4 which are the value obtained for the semi-infinite plane having
an edge crack of length b. Figure 3.6 shows the effect of thickness ratio on the stress
intensity factor in two- orthotopic layers with a pressurized edge crack. The results
for the crack terminating at the interface are shown in figure 3.6 (the curve
corresponding to 1})1— = 1 ). In all these figures the Stress Intensity Factors are

obtained from (3.106) for edge crack and (3.109) for crack terminating at the

interface.
Figure 3.7 shows the Stress Intensity factor in two-orthotropic layers
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containing an edge crack and subjected to uniform bending away from the crack

region. In the uncracked two-layer plate the relevant stress is given by

axl(y1)='p1(Y1)='Pb(1’Y1/C1),

0< Y1 < hl B
e = Ba’ hy2 + 2 Exp* by hy + Eyp by
1 2(Eq hy + Exp hy) ’ (31158 b)
115 a,
Ex* = Ex, for plane stress

i for plane strain
- Vxz Vax

where y,; = ¢; determines the Jocation of the neutral axis and the constant p, is the
magnitude of the stress at the plate surface which is related to the bending moment

M by

3c;M
¢ +(Exp*/ Eqy* - 1) (¢ - Iy )} 4+ Exp*/ Eq* (hy+hy-¢ )

Pp =

(3.116 )

Table 3.3 shows the Stress Intensity Factors for an edge crack under constant
pressure and bending conditions for material pair I, that is, for a homogeneous
isotropic strip. These results are given here for the purpose of comparison. Tables 3.4-
3.7 show the effects of material combinations and properties on the power of stress
singularity 8 which is obtained from equation ( 3.88 ) for a crack terminating at the
interface. All the results are obtained for plane strain case. Results in Tables 3.4 and
3.5 are given for fixed elastic properties in material I and varying elastic properties in

material II. These results are for both isotropic and orthotropic material pairs. To
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give some idea about how the material constants in material II effect 8 for a full
range of pz* hypothetical material constants are used. Here u* are calculated from
( 3.114 ). From these tables note that as the second material becomes “stiffer”, i.e.
as py"/ py* increases, the value S decreases in a certain range of p,*/ u,* .
Beyond that range, the ratio p,*/ u;* has almost no effect on 8. It is also
important to note that the value 3 is heavily dependent on the material parameters in
the first layer due to the fact that the crack is in the first layer. For the orthotropic
material pairs results in Tables 3.4 and 3.5 correspond to three different orthotropic
material pairs with u;* values of 1.35, 12.078 and 61.6 (GPA). It is clearly seen that

when the “stiffeness” in the first layer decreases, # becomes smaller.

The effect of individual material constants in the second layer on the power of
stress singularity # are examined in Tables 3.6 and 3.7. The results are only done for
partial variations of the variable c because materials with the other half variations are
material of type II. In Tables 3.6 and 3.7 material I is fixed as an isotropic material
and material II is the same as material I except one material constant is changed
which is Ey in Table 3.6a and Gyy in Table 3.6b. We can see that Ey in the second
layer almost have no effect on [ because the crack located in the y-z plane. In
contrast to this Gyy in second layer has much large effect on 8. Similar effects are
studied for the fixed orthotropic materials I. The results are shown in Tables 3.7. As
expected E,,/ E,; has the most significant effect on 5. The effect of G,,,/G,,; on f

is similar to the isotropic cracked layer.

Finally it should be pointed out that the accuracy of the numerical results for
Stress Intensity Factors is not uniform. For Stress Inténsity Factors at an imbedded
crack the convergence was relatively fast. However, in the calculation of the Stress
Intensity Factors for an edge crack, particularly for u,* > #2*, there were

convergence difficulties for b — h; and b = h,.
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3.7 RECOMMENDATIONS

In the present work, a general formulation of the fracture problem of layered
orthotropic strips with a crack perpendicular to the interface is given. The
formulations done only for the case where both materials are of type I. This would
have a limitation on the choice of the materials. Following the same procedure, the
problem can also be studied for orthotropic materials of type II, or for the

combination of type I and type Il

In this study the crack is limited in the first layer only. A further study could
be done for the case when the crack crosses the interface, when there is a T shaped
crack with the crack going along the interface and when there are cracks in both

layers.

In our formulation the thickness of the adhesive bonding the layers has been
neglected. The study of the adhesive also can be recommended. Also, the bonded
materials with more than two-layers could more realistic for the study of the

composite materials, but it requires lengthy algebra.

There are many other problems to be studied in the fracture of bonded
materials. We hope that our work will have its contributions in the study of these

problems.
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Chapter 4. Surface Cracks in a Two-layer Orthotropic Plate

4.1 INTRODUCTION

The surface or part-through crack problem in a structural component which
may locally be represented by a “plate” or a “shell” is certainly one of the most
important problems in Fracture Mechanics. It is a truly three-dimensional problem in
which the stress field pefturbed by the crack interacts very strongly with the surfaces
of the solid. Because of its complexity generally the problem seems to lend itself only
to numerical techniques. At the present, a neat analytical treatment of surface crack
problem, even for the linear elastic isotropic solids, appears to be intractable.
Consequently, the available solutions of the problem very heavily rely on some kind of
numerical technique such as the finite element method [ 37, 38 ], the alternating
method [ 39, 40 ], the boundary integral method [ 41 ], the finite element alternating
method [ 42 ], the method of weight functions [ 43 ], and the body force method [44].
For reviews of various methods and solutions see [ 45, 46 ]. Also see [ 21 ] for the

extension of various methods to the shell problem.

The line-spring model, proposed by Rice and Levy [ 47, 48 ] and incorporated
in a plate theory that allows for transverse shear deformation [ 2, 3 ], competes with
these methods because of its simplicity and relatively high accuracy. Basically this
model transforms the part-through crack problem into a through crack problem by
making use of the corresponding plane strain edge crack solution. Figures 4.2-4.5 show
the comparisons of Line-Spring model with the finite element method and the effect of
transverse shear in a homogeneous plate containing a surface crack and subjected to
membrane and bending loads. It may be seen that this model indeed gives very good

results.

Because Line-Spring model allows for the solution of the three-dimensional
surface crack problem within the two-dimensional plate theory, it reduces the
computational effort considerably. Once the verification of this model has been
established more extensive parameter studies can be made. Due to the lack of other
solutions for the non-homogeneous plate, this verification is done only for the

homogeneous plate [ 21, 49 ]. Also it is important to point out that for surface cracks
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the most important point is the deepest penetration point of the crack front which lie
in the center of the more accurate and applicable area of this model. In this study
most of the results are given for quantities at the deepest penetration point. We refer

o [ 21] for the behavior of the surface crack around the end points.

In this study the surface crack problems ( Figure 4.1) are solved for a two-
layer orthotropic plate under uniform tension and bending moment with the surface
crack penetrating only through one of the two layers. This restriction is due to the
fact that the corresponding two-layer edge-notched orthotropic plane strain results are
available only for this geometry and that the line spring model for cracks intersecting
the bimaterial interfaces has not yet been formulated. The solution of the plane strain
problem needed in this study is given in Chapter 3 where extensive numerical results
are provided for various material combinations. Among these material combinations
considered the following are of considerable practical interest: ( a ) fiber reinforced
laminated composite materials; (b ) ceramic and metal bonded structural components,
and ( ¢ ) the films on elastic substrates used in the microelectronic devices. The
results given for all these material combinations are for various geometrical
parameters of plates and cracks. Also the effects of material orthotropy on the stress

intensity factors are examined.
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4.2 THE LINE-SPRING MODEL

4.2.1 The Description of Line - Spring Model

The Line - Spring model was first proposed by Rice and Levy [ 47 ] in 1972
and since then many improvements and modifications have been made. We refer to

[ 21 ] for a literature survey and for various modifications of the model.

Briefly, the model allows one to use a plate theory to formulate the problem
by removing the “net ligament”, and replacing it by unknown, thickness averaged
stress resultants which may then be treated as crack surface loads in a through crack
problem. Figure 4.6 illustrates this process for Mode 1 crack problem. This technique
reduces by one dimension the complexity of the analysis. Moreover, it allows both
through and part-through crack problems to be solved with the same plate theory

formulation.

Recall that in Chapter 2, the two-dimensional formulation of through crack
problem in a plate is solved as a mixed boundary value problem with the mixed

boundary conditions as follows:

Nx (0,y)=- Ny, |y | < a,

UO(OSY):Os ¥y | > a,
and

My (0,y )=- Mx™, [y | < a,

¢x (0,y)=0, |y | > a,

(4.1)

where the general principle of superposition is used to account for the loading N>

and M, applied to the structure at “infinity” or away from the crack region.

In the case of part-through crack problem the net ligament is replaced by
appropriate resultants N and M ( Figure 4.6 ) and therefore, the corresponding mixed

boundary value problem must be solved under the conditions:
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NX(an)z‘NXOO+Ns |Yl<a’

uy (0,y)=10, [y |> a,
and

MX(Osy)z'NIXOC'*'NIa ‘y!<a':

¢x (0,y)=0, |y | > a

(4.2)

Thus referring to ( 2.33 ) for the corresponding through crack formulation, the

governing equations for the two-layer plate with a surface crack may be expressed as:

a
S J ( t-]y + Ky (yot)]eg(t)de+
_a‘

a

H%Q J | t_ly +k12(y,t)]g2(t)dt:-Nxoo+N,
-a

a
fz [Ty ke (n O e d
-a

a
——”3,2[ [ t}y F Koy (¥yt) ] gp(t)dt=- M+ M,
-a

1y | < a,

(4.3)
where
g1(t): aug(t ),
go(t) = 51%2 )
(4.4)



The unknowns in equations ( 4. 3 ) are N, M, ug and ¥y, where N and M are net
ligament stress resultants illustrated in Figure 4.6, ug is the in-plane displacement of
the x direction in nuetral plane and iy is the rotation of the section x=constant. Since
there are four unknowns and only two equations more information is needed. In the
line-spring model, N and M are linearly related to ug and vy in the manner of a
spring. After substitution of these relationships into equation ( 4.3 ), gy or g, ( or uy
or ¥x ) can be numerically determined from which all quantities of interest can be

calculated.

4.2.2 The Compliance Functions

The Line-Spring model is based on two assumptions. The first, previously
stated and illustrated in Figure 4.6, involves replacing the net ligament ( in which the
state of stress is two-dimensional ) by resultant forces which are functions of y only.
The second assumption is that the stress intensity factors along the crack front may
be obtained from these resultant forces as though the stress state were one of plane
strain. Clearly, very near the end points the assumption would not Dle valid.
Therefore, this model is most accurate in the center of the crack and improves as the
crack gets longer for a given crack depth, i.e. as plane strain conditions are

approached.

In order to make use of this analogy, the plane strain stress intensity factor
solutions for the corresponding two-layer edge-notched strip must be available. Such
solutions used in this study are obtained from the results of Chapter 3 and along with

a curve fit in the form of:

k
g (&)= atJIT =7 ¢ kgoctkf’
g (€)= — e = {7 ¢ anc ek
b Ub‘f—h_ =5 bk ’
0< € < 0.9,
(4.5)

where
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§ =L(y)/h, (Figure 4.6).

In the literature, g, and g; are often referred as shape functions which can be
obtained once the edge cracked plane-strain results are given. Then, the stress

intensity factor for the strip can be expressed as

Klzﬁ(atgt+abgb).
(4.6)

In these expressions o( y ) and o( y ) represents the averaged net ligament stresses

as follows:

(4.7)

The derivation is based on expressing the energy available for fracture along
the crack front in two different ways. First, in a plate with an edge crack subjected to
a uniform tension N and bending moment M ( Figure 4.7 a ), if K is the stress
intensity factor given by the plane strain solution, from the crack closure energy, the

energy ( per unit width ) available for fracture may be obtained as [ 50,51 ]

i Y -2
G:W(D-\/)ZAI\I,

(4.8)

where

for isotropic materials,
or

e;; € 1/2 ., € 1/2 , 2e3+e 1/2
’\2(11233)/[(e1313)/+ 123e3355 /

A

for orthotropic materials.

(4.9)
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See Appendix I for expressions of &jj- With the assumption of coplanar crack growth,

equation ( 4.6 ) are substituted into ( 4.8 ) to obtain,

Gz_aézf(U-V):hA(atzgtz+20b0tgtgb+ab2gb2)'
(4.10)

Next consider the crack to extend from L to L 4+ AL under “fixed load”

conditions. The resulting changes in U and V are as follows ( Figure 4.7 b ):

dU = N dé + M dF,
V=L [N(6+d6)+M(0+d0)]-L(N6+M0)

:%(Ndé-;Mde).
(4.11)

Equations ( 4.11 ) give the energy available for a crack growth dL as follows:

d(U-V)= —%—(Ndé-}-MdO).
(4.12)

Note that N and M are fixed loads, and for a change of dL in the crack length we

have

_ 046 _ 08
dé = (')LdL’ dé = 8LdL'
(4.13)
Thus, from ( 4.12 ) and ( 4.13 ) it follows that
__0 = Ll(n 08 28
G=2r (U-V)= 5N +M 51 ),
(4.14)

and by using ( 4.9 ) we find

—12—(N gI{ 4+ M gI{ )= 11/\(at2gt2+2abcrtgtgb+a'b2gb2),

(4.15)
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where g, and g, are known functions and expressions of o and oy are given in (4.7).

Assuming

W

€

Il

I
O')I'.‘T‘ o

Wa

and

2
Bt~ &t&p

G(¢)= 2
£t8p Ep

b

(4.16)

equation ( 4.15 ) may be written as

(4.17)

(4.18)

By observing that G is a function of L, 7 is independent of L and w = 0, for L = 0,
from ( 4.18 ) we find :

L
w=2X3h ( 4+ J GdL)r=2hA[A]T,
(4.19)
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where

1 L 2 1 L
0

0
(4.20)
From ( 4.19 ) and ( 4.20 ) one may write
oy 1 ]
T = = ) F }
ap 2h A __é_g
where
= [‘m:]: (ATl
(4.21)

Thus, the relationship between ( N, M ) and ( 6, § ) may be expressed as follows:

N oy 1 c é
= 2 = ——
M boy 2hA 9

where

C = [Cij]!
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and

= - — h
€11 = Mip €12 = 21 = § M

_ b2
C22 = 35 722
(4.22)
From definition ( 4.4 ) and observing that ( Figure 4.7 )
§=2uy(0,y),
8 =2ux(0,y),
(4.23)
we obtain
N 1 | ‘11 ‘a2 Bc1
M €12 C22 Bc2
v
gCl:J gy( t)dt,
-a
y
gCQZJ gz(t)dt.
-a
) (4.24)

Equation ( 4.24 ) gives the information that is needed for substitution into
integral equations ( 4.3 ). From this the surface crack problem may be solved

numerically in a manner similar to the case of the through crack problem.
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4.3 SINGULAR INTEGRAL EQUATIONS

4.3.1 The Singular Integral Equations

As mentioned in subsection ( 4.2 ), the singular integral equations for part-
through crack problems may obtained directly from the corresponding through crack
equations combined with the compliance function ( 4.24 ). From ( 4.3 ) and ( 4.24 ),

they may be expressed as follows:

a

J7
| 1l k() ) s des
a
I
B[ k() Tl 1) d
-a
€11 Y €12 ¥ a2
- = J g,(t)d ’TJ‘ go(t ) dt = - N= |
-a -a
1o [0 1 k ot t ) dt
7 [ =5 + ko (v t)]g(t)dt +
-a v

a

1

P22 [l ke (3 ) Teal 1)
-a

Yy Y
Cc C ,
_f\_IJ' gl(t)dt-%ﬁa go(t) dt = - M |

-a

[y | <a.
(4.25)

We refer to ( 2.33 ) and ( 2.34 ) for the expressions of y;; and kij» A can be obtained

from ( 4.8 ), and g;( t ) and g, ( t ) are the unknown functions defined in ( 4.4 ).

Also these singular integral equations must be solved under the following

single-valuedness conditions:



a a
J g,(t)dt =0, and J go( t)dt =0.
-a -a

(4.26)

Since the dominant part of the system of integral equations ( 4.25 ) has only a
Cauchy kernel ( which is the same as in the through crack case ), the solution is of

the following form:

_ () .
gi(t‘)—ﬁv (1—132)a

(4.27)

where the function f; and f, are bounded in the closed interval [t | < a.

Following similar numerical procedures as in the through crack case, described
in subsection (2.3.1) of Chapter 2, by first normalizing the equations from -a< y < a
to -1< s < 1, and then using the collocation method, the unknown functions g; (v )

and g, (y )orf; (y)andf, (y) may easily be determined numerically.

4.3.2 The Stress Intensitv Factors

After solving the singular integral equations ( 4.25 ) under the single-
valuedness conditions ( 4.26 ), the unknown functions g, ( ¥ ) and g, (y ) can be
obtained. Then, using the expressions ( 4.24 ), the stress intensity factor K( y ) along

the crack front may be determined as follows:

Ky=h (o8 +0p8 )
(4.28)
where o, = hlrl_’ and o, = —i—%l——ﬁ—, which are equivalent net-ligament stresses and gy
and g, are known functions] obtained from the corresponding edge-notched plane
strain results.
Notice that while the solution of a through crack gives the stress intensity factor at y
= #a, the line-spring model provides stress intensity factors along the front of a

surface crack, that is -a< y < a.
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Since the model is most accurate in the central portion of the crack, it is best
applied to problems where failure occurs when the surface crack grows through the
thickness leading either to leaking or to the development of a through crack which
then grows in length to a critical size. Because of the plane strain assumption, the
model becomes less applicable near the ends of the crack. Because of this the results

given in these study are mostly at the maximum penetration point and for a/h>0.5.
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4.4 RESULTS AND DISCUSSION

The main interest of the study in this chapter is in evaluating the stress
intensity factors in a two-layer isotropic and orthotropic plates with a surface crack.
The similar problems for homogeneous one-layer isotropic and orthotropic plates have
been considered before in [ 21 ], [ 49 ], [ 22 ] and elsewhere. Some of those results are

shown here for the purpose of comparison.

The elastic constants of the material combinations used in the numerical
examples are given in Tables 4.1 and 4.2. The material combinations considered here
are of important practical interest: Material Pair A and B are fiber reinforced
laminated ( graphite-epoxy ) composites, which have long been widely used in
aerospace industry; Material Pairs C, D and E are ceramic and steel bonded
structural components, which have recently been receiving increasing attention in a
number of applications of metal/ceramics joints [ 52, 53 ]. Material Pair I represents
an isotropic homogeneous plate which is included here for the purpose of comparison.
Extensive numerical results are given for all these material combinations with various

geometrical configurations.

As in previous studies, the stress intensity factors are given in their normalized
form. For the Line-Spring model, the stress intensity factors are normalized in two
different ways. First, they are normalized with respect to the correspouding plane

strain values ( corresponding to the limiting values when a/h —oc ), namely

ky (0)

and
. OC ’
l‘l:t

where ktooand kboo are the corresponding values for an edge-cracked strip under
plane strain conditions with the same Lg/h ratio ( Figure 4.1 ). These normalizations
show how the constraining effect of the ends affect the crack driving force. For the
same a/h value, when
. ki (0) . - 0

the value LO/h increases —‘—1\7.—0— (i=t,b ) may decrease, this is because ki (i=
t, b ) are relatively more r'apidly increasing functions of Lg/h. To give some idea
about the absolute values of the stress intensity factors, part of the results are given

for a fixed normalizing stress intensity factor, i.e.,
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k k 0
toc( 0) . and ——%O—(—)—,
oy hy oy hy
where
oo NOC < GMOO
o = T = 0

and hy is the thickness of the first layer of the plate.

In this form it is expected that for a given a/h when Ly/h increases ( i.e., the surface
crack gets deeper ) the normalized stress intensity factor —IE—_ (i=1,b ) would

7 «]—h—l—

also increase.

In both normalization forms, the stress intensity factor ki( 0 ) and ky( 0 ) are the
values calculated at the maximum penetration point of the crack under the membrane
and bending loads respectively. Here it should be observed that, as in the through
crack casc, when we say the plate is under the bending load we always assume that
the plate is under membrane load of sufficiently high magnitude as well, so that there
is no interference of the crack surfaces on the compressive side of the plate. In the
case of a part-through crack, as can be seen from the results later, under hending the
stress intensity factors change sign as the crack gets deeper. Since a negative stress
intensity factor has no meaning, these solutions, similar to the through crack case,

require a superposition of a tensile solution to make k; > 0, (i = t,b ).

As noted before, for the application of the line-spring model, the contour of
the part-through crack can be any reasonable curve. Elliptic cracks are mainly studied
here since it is believed that the ellipse is the closest contour for the actual shape of
the crack which may be encountered in practical application. One could refer to [ 21 }
for results of some different contours and their effects on the convergence of the
results. Here for elliptical contour, the crack depth for any cross section is defined by

{ Figure 4.1 )

L(y)=1Lo{1-(y/a) ,
1yl <a,
(4.29)

where Lg is the crack depth at the midsection (y = 0).
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Tables 4.3 - 4.8 show the stress intensity factors in the two - layer strip
containing an edge crack under membrane loading N and bending moment N for the
material pairs given in Table 4.2, These are the actual values for k,* and kboo
( see the first normalization form ) and are calculated from the results of Chapter 3.
Based on these plane strain results the coefficients cp and ¢, in the shape function
gy (€)and gy, (€ ) of the corresponding material pairs are given in Tables 4.9 - 4.14.

To make a better curve fit in all material pairs considered g ( ¢ ) has the form of

n
gb (¢) =\J7T £ Z Cpk f(k-l)s
k=1

(4.30)
while
n
2(k-1
g (€)={T€ 3 ey 8V,
k=1
(4.31a)
for hy/h; = 1., 0.2, and
n 1
g (6)={r€ 3 ey 67,
k=1 (4.31b)

for hy/h; = 10., 5.

The extensive numerical surface crack results are given in Figures 4.8 - 4.17
and Tables 4.15 - 4.42, which are very much self -- explanatory. Before giving further
results about two - layer orthotropic plates, the surface crack results for a
homogeneous isotropic plate ( Material Pair I ) are shown first in Figures 4.8 - 4.11,
which correspond to the two normalization forms under bending and tension
respectively. The trends discussed before for these two stress intensity factor
normalization forms can be clearly observed in these figures. Figures 4.12 - 4.16 are
the results for Material Pair B and Figure 4.17 is the comparison of the Material Pair
I ( i.e. the homogeneous isotropic plate ) and Material Pair B ( which consist of fiber

reinforce composites ). As we can see here the material orthotropy does have a

133



significant effect on the normalized stress intensity factor, especially when Lg/h;

increases.

Tables 4.15 - 4.38 show the results for all the material pairs given in Table
4.2, which are given again in both normalization forms. Based on all these results the
surface crack behavior could be observed and moreover, combining with proper crack
propagation model the subecritical crack growth and fatigue crack growth problem,
which are very important practical problems, can be studied. Tables 4.39-4.42 give
the results regarding the distribution of the normalized stress intensity factor at the
crack front for Material B under bending and tension respectively. Tables 4.39 and
4.40 are results for a semi-elliptic surface crack and Tables 4.41 and 4.42 are for a
rectangular surface crack. Here the rectangular surface crack contour for any cross

section is defined by ( Figure 4.1 )

L(y)= L, [y ]<a,
(4.30)

where L is the crack depth at the midsection (y = 0 ).

Finally it must be noted that, due to the lack of available surface crack results
in the layered orthotropic plate, the comparison with other results is made only with
liomogeneous material, which has been shown to give very good results ( figures 4.2 -
4.5 ). Because of the relative simplicity and high accturacy of the model more
extensive parameter studies for wider range of orthotropic and isotropic material

combinations can be done whenever it is needed.
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Table 2.1 The Material Elastic Constants. ( Unit: GPA)

Materials A, B, C and D: Fiber Reinforced Composites

A B C D
Ex 39.0 30.6 153.07 40.41
Ey 30.6 39.0 40.41 153.07
E; 6.4 6.4 - 22.75 22.75
Gy 19.7 19.7 29.30 29.30
Gyz 4.5 4.5 1.55 4.08
Gz 4.5 4.5 4.08 1.55
Vay 0.447 0.351 1.834 0.484
Vyz 0.275 0.275 0.261 0.195
Vxz 0.275 0.275 £ 0.195 0.261
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Table 2.2 The effect of the thickness ratio a/h on the stress intensity factor
in a cracked plate under uniform bending.

(op =6 Mg/ h?)

ky(h/2) Jo, T a

a/h Classical Reissner Mindlin Reddy
0.05 1.0000 0.9885 0.9868

0.1 1.0000 0.9677 0.9632 0.9676
0.25 1.0000 0.8992 0.8895 0.8992
0.5 1.0000 0.8193 0.8087 0.8193
1. 1.0000 0.7475 0.7401 0.7477
2. 1.0000 0.6997 0.6982 0.7008
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Table 2.3 The effect of the thickness ratio a/h and the transverse shear correction
factor K ( see 1.18 ) on the stress intensity factor in a cracked plate under

uniform bending.

(o, =6 Mo/ h?)

ki (h/2) /o, {2

K 0.0001 5/6 1 10 100
a/h
0.05 1.000 0.9885 0.9868 0.9338 0.8141
0.1 1.000 0.9677 0.9632 0.8634 0.7449
0.25 1.000 0.8992 0.8895 0.7610 0.6898
0.5 0.9997 0.8193 0.8087 0.7090 0.6684
1.0 0.9990 0.7475 0.7401 0.6793

137



Material 3:

Material 4:

Material 1
Ex=39.0
Ey=30.6
E;=6.4
Gxy=19.7
Gyz=4.5
Gxz=4.5
Uxy=0.447
vyz=0.275

Vyz—_—0.275

E=200.,

E=137.9,

Steel

Zirconia

Material 2
Ex=30.6
Ey=39.0
E;=6.4
Gxy=19.7
Gyz=4.5
Gxz=4.5
vxy=0.351
vxz=0.275
vyz=0.275

V=0.26

v=0.26

Table 3.1 The Material Elastic Constants. ( Unit: GPA)

Material 1 and Material 2: Fiber Reinforced Composites

Material 5: Alumina

E=325., v=0.3

Table 3.2 The Material Pairs. ( Figure 3.1 )

Materials
Material Pair Layer 1 Layer I1

A 2 1
B 1 2
C 5 3
D 4 3
E 3 4
I 3 3
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Table 3.3 Stress Intensity Factor in a strip containing an edge crack under
membrane loading N and bending moment M.  ( Material Pair 1 )

(oy=N/h, o, = 6M/h? )

L ky ky
(h/2.) oy VL oy AL

0.001 1.1215 1.1215
0.1 1.1399 1.0708
0.2 1.1892 1.0472
0.3 1.2652 1.0432
0.4 1.3673 1.0553
0.5 1.4975 1.0826
0.6 1.6599 1.1241
0.7 1.8612 1.1826
0.8 2.1114 1.2606
0.9 2.4253 1.3630
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Table 3.4 Power of singularity, 8, for a crack terminating at the interface. (I )

( Fig. 3.1, Eq. 3.88 )

isotropic orthotropic
vi=v, =03 p* = 12.078
* *

"Zf_* 8 —L‘j— 8
0.001 0.963 0.045 0.835
0.01 0.915 0.119 0.755
0.045 0.826 B 0.375 0.650
0.1 0.246 0.659 0.564
0.98 0.502 0.871 0.520
1.0 0.50 1.0 0.50
1.02 0.498 3.642 0.346
10.0 0.333 5.10 0.313
22.22 0.301 13.66 0.242
44.44 0.30 91.06 0.193
100.0 0.294 273.2 0.186
1000. 0.290 546.6 0.184
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Table 3.5 Power of singularity, 8, for a crack terminating at the interface.( IT)
( Fig. 3.1, Eq. 3.88 )

orthotropic orthotropic
p,* =135 py* = 61.6
* *

—’fl’T 8 —i‘;j— B
0.41x107° 0.998 0.446x107° 0.998
0.41x107* 0.995 0.446+107 0.995
0.41+10-3 0.986 0.446%1073 0.984
0.0041 0.954 0.0089 0.931
0.041 0.863 0.129 0.775
0.4075 0.644 0.196 0.725
0.998 0.520 0.999 ' 0.528
1.00 0.5 1.00 0.5
5.9 0.286 17.86 0.279
7.79 0.277 89.27 0.254
41.0 0.157 892.7 0.248
4.1x10° 0.121 8.93x10° 0.2477
4.1x10% 0.117 8.93x10% 0.2477
4.1x10° 0.117 8.93%10° 0.2477
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Table 3.6 The effect of the individual material constants on the power of singularity.
( Material I is isotropic, Material II is assumed to be “isotropic”
with the same material constants as Materials I
except: a. varying Ey, ¢;= Ey/E,=Ey/E;
b. varying Gyy, co=Gxy/Ex=Gyy/E )

151 I‘z*/ﬂl* B
1.0 1. 0.5
10. 1.186 0.48
100. 12.88 0.459

Co #2*/ﬂ1* B
1.0 1. 0.5
0.1 0.3667 0.603
0.01 0.1178 0.7385
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Table 3.7 The effect of the individual material constants on the power of singularity.
( Material I is othotropic, Material 1, and Material II is assumed
to be “othotropic” with the same material constants as Materials T
except: a. varying E, 5, ¢;= Eyo/Ey;;

b. varying G,y», c3=Gyy2/Gxy; )

Cq ﬂz*/lh* B
0.5 0.6363 0.564
1.0 1. 0.5
2.0 1.661  0.427
5.0 5.1 0.283
C2 I‘z*/lh* g
1.0 1. 0.5
0.1 0.369 0.607
0.01 0.1192 0.744
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Table 4.1 The Material Elastic Constants. ( Unit: GPA)

Material 1 and Material 2: Fiber Reinforced Composites

Material 1 Material 2
Ex=39.0 Ex=30.6
Ey=30.6 Ey=39.0
E;=6.4 E;=6.4
Gxy=19.7 Gxy=19.7
Gyz=4.5 Gyz=4.5
Gyz=4.5 Gy,=4.5
vxy=0.447 vxy=0.351
vxz=0.275 vxz=0.275
vy2=0.275 vyz=0.275

Material 3: Steel
E=200., v=0.26

Material 4: Zirconia
E=137.9, v=0.26

Material 5: Alumina
E=325., v=0.3

Table 4.2 The Material Pairs. ( Figure 4.1 )

Materials
Material Pair Layer I Layer II
A 2 1

W W o Y e
W A W W

B
C
D
E
1
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Table 4.3 Stress Intensity Factor in a homogeneous isotropic strip containing an edge
crack under membrane loading N and bending moment M. ( Material Pair 1)

( oy = N/h, o, = 6M/h?)

L ke kp
(h/2.) oy AL op VL
0.001 1.1215 1.1215
0.1 1.1399 1.0708
0.2 1.1892 1.0472
0.3 1.2652 1.0432
0.4 1.3673 1.0553
0.5 1.4975 1.0822
0.6 1.6599 1.1241
0.7 1.8612 1.1826
0.8 2.1114 1.2606
0.9 2.4253 1.3630
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Table 4.4 Stress Intensity Factor in a two-layer strip containing an edge crack under
membrane loading N and bending moment M.  ( Material Pair A )

( oy = N/h, op = 6M/h2, h,/h;=1.)

L kg kp
i) Ex X

0.001 1.106 1.106
0.1 1.115 1.060
0.2 1.160 1.030
0.3 1.237 1.033
0.4 1.334 1.047
0.5 1.455 1.074
0.6 1.602 1.114
0.7 1.780 1.165
0.8 1.990 1.228
0.9 2.226 1.296
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Table 4.5 Stress Intensity Factor in a two-layer strip contain

membrane loading N and bending moment M. ( Material Pair B )

(0, = N/h, op =6M/h? )

h,/h,=10

L ky kp
hy oy \L op VL

0.001 1.100 1.100
0.1 1.060 1.003
0.2 1.000 0.984
0.3 1.031 0.985
0.4 1.036 0.988
0.5 1.054 0.993
0.6 1.073 1.000
0.7 1.094 1.007
0.8 1.117 1.016
0.9 1.143 1.027
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hy/hy=1.
ky ky

o, AL ap, {L
1.100 1.100
1.120 1.050
1.164 1.016
1.248 1.016
1.355 1.028
1.492 1.055
1.664 1.097
1.881 1.157
2.160 1.243
2.538 1.368

1.100
1.192
1.298
1.545
1.904
2.436
3.254
4.591
6.949

11.342

ing an edge crack under

1.100
1.004
1.021
1.077
1.178
1.344
1.609
2.046
2.803
4.126



Table 4.6 Stress Intensity Factor in a two-layer strip containing an edge crack under
membrane loading N and bending moment M.  ( Material Pair C )

(oy = N/h, o, = 6M/h?)

hy/hy = 1. h,/h; = 5.

L i_ ky ky ky
By oy L op VL W‘- oy L
0.001 1.121 1.121 1.121 1.121
0.1 1.140 1.062 1.103 1.078
0.2 1.200 1.039 1.143 1.092
0.3 1.293 1.038 1.169 1.093
0.4 1.417 1.056 1.201 1.098
0.5 1.578 1.090 1.240 1.109
0.6 1.782 1.143 1.287 1.126
0.7 2.046 1.219 1.345 1.150
0.8 2.398 1.330 1418 1.186
0.9 2.915 1.506 1.521 1.245
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Table 4.7 Stress Intensity Factor in a two-layer strip containing an edge crack under
membrane loading N and bending moment M. ( Material Pair D )

(o, = N/h, o, = 6M/h?)

h,/hy=5. h,/h,=1. hy/h,=0.2

L ky kp LI kp _ ke kp

hy oy {L oy \L oy JL op JL oy JL oy JL
0.001 1.120  1.120 1.120  1.120 1.120  1.120
0.1 1119 1.074 1132 1.070 1.161  1.052
0.2 1.114  1.072 1171 1.044 1.278  1.045
0.3 1,113 1.049 1234  1.036 1.464  1.081
0.4 1113 1.027 1.319  1.043 1.734  1.158
0.5 1.114  1.007 1.426  1.062 2119  1.284
0.6 1.114  0.987 1.556  1.091 2.677  1.480
0.7 1.112  0.967 1.709 1130 - 3522  1.785
0.8 1.109  0.944 1.882 1174 4.874  2.27T7
0.9 1.104  0.914 2.058  1.212 7.147  3.093
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Table 4.8 Stress Intensity Factor in a two-layer strip containing an edge crack under

( Material Pair E )

membrane loading N and bending moment M.

(oy =N/h, o = 6M/h? )

h,/h;=5.
l‘{t kb
1.120  1.120
1.101  1.078
1.138  1.090
1.161  1.088
1.188  1.087
1.222  1.095
1.263  1.107
1.312 1.125
1.374  1.152
1.459  1.198

150

h,/h,=1. h,/h;=0.2
kt kb kt
oy VL op L oy L

1.120 1.120 1.120
1.139 1.063 1.167
1.196 1.040 1.300
1.284 1.038 1.515
1.403 1.055 1.827
1.556 1.088 2.277
1.750 1.139 2.940
2.000 1.212 3.958
2.328 1.316 5.618
2.802 1.480 8.581

kb
o L

1.120
1.045
1.039
1.079
1.163
1.298
1.508
1.834
2.357
3.256



Table 4.9 The coefficients C,, and Cy, for the shape functions

g(¢) and gy(¢). ( Material Pair 1)

k Cix Coxk

1 1.121 1.121

2 6.520 -1.887

3 -12.39 18.014

4 89.06 -87.38

5 -188.61 241.91

6 207.39 -391.94

7 -32.05 168.01

Table 4.10 The coefficients Cyy and Cpy for the shape functions
gi(¢) and gy(¢). ( Material Pair A, hy/h;=1.)

k Cti Cok

1 1.103 1.107
2 6.172 -1.278
3 -13.434 6.195
4 90.976 -7.717
5 -196.82 5.208



Table 4.11 The coefficients Cik and Cp, for the shape functions
g(¢) and gy (e).

o B~ TS R Ny

Table 4.12

O A W =

h,/h;=10.
Cti Cok
1.019  1.033
17.083  -2.537
24.226  19.186

( Material Pair B )

h,/h,=1.
Cex Cp
1.101 1.102
6.637 -1.499
-9.789 8.323
64.081 -17.56
-22.357  20.85

h,/h;=0.1
Cuk Chik

1.107  1.102
5837  -2.159
4321 16.133
50.836  -53.66
-116.98  108.80
180.96 -112.50
-87.04  52.913

The coefficients C,, and Cpx for the shape functions

ge(¢) and gy ().

hy/h,=5.

Cix Coi
1.09 1.110
0.528 -0.901
15.81 8.284
-5.67 23.269

( Material Pair C)

h,/hy=1.

Cex Cok
1.121 1.121
7.786 -1.672

-12.31 10.71
78.050 -26.47
43.543 33.67
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Table 4.13

-~ O kW NN =

Table 4.14

~- S R W N = W

The coefficients Cyy and Cyp, for the shape functions

gi(¢) and gp(¢)-

( Material Pair D )

h,/h,=5. h,/h,=1.
Ctk Cox Cix Coxk
1.120 1.116 1.12 1.120
-0.333 -1.732 5.25 -1.189
4.849 9.058 -8.925 4.565
-22.62 -42.95 66.168 -2.533
-183.23 -1.605

The coefficients Cy, and C, for the shape functions
( Material Pair E )

g(¢) and g (e).

h,/hy=5. h,/hy=1.
Cix Cox Cix Coxk
1.11 1.11 1.12 1.121
0.487 -1.091 7.37 -1.622
7.227 8.513 -10.52 10.10
32.19 13.05 66.22 -24.12
41.11 30.25
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h,/h,=0.2
Cex Coxk
1.12 1.12
- 5.83 -1.36
-9.20 7.81
76.80 -20.42
-203.60  45.04
321.69 -53.50
-181.34  31.81

h,/h,=0.2
Cik Cok

1.12 1.12
6.64  -1.61
-9.47 10.63
80.09  -34.84
-185.27  83.77
256.77 -103.51
-108.72  56.83.



Table 4.15 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 15a the normalization factor
k7 is calculated from the corresponding crack depth L=Lgy. The results in 15b

are normalized with respect to kg = oy Jh; o= N/h.
( Material Pair A, hy/h;=1.)

Table 4.15 a
ke(Lo)/ko?

Lo/hy 0.3 0.6 0.9

a/h
6. 0.955 0.821 0.637
4. 0.936 . 0.768 0.563
2. 0.892 0.663 0.442
1. 0.829 0.546 0.333
0.5 0.736 0.419 0.255
0.25 0.607 0.299 0.179

Table 4.15 b
kt(LO)/kOt

Lo/hy 0.3 0.6 0.9

a/h
6. 0.647 1.019 1.345
4. 0.643 0.995 1.189
2. 0.604 0.823 0.929
1. 0.562 0.678 0.703
0.5 0.499 0.550 0.538
0.25 0.411 0.371 0.378
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Table 4.16 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 16a the normalization factor
kS is calculated from the corresponding crack depth L=Lq. The results in 16b
are normalized with respect to kg, = obm, ab=6M/h2.

( Material Pair A, hy/hy=1. )

Table 4.16 a
k(L)

L,/h, 0.3 0.6 0.9

a/h
6. 0.954 0.806 0.591
4. 0.934 0.747 0.506
2. 0.888 0.631 0.365
1. 0.821 0.500 0.238
0.5 0.723 0.358 0.130
0.25 0.586 0.223 0.050

Table 4.16 b
kb(LO)/kOb

Lo/h, 0.3 0.6 0.9

a/h
6. 0.540 0.695 0.727
4. 0.512 0.645 0.622
2. 0.486 0.544 0.449
1. 0.450 0.431 0.293
0.5 0.396 0.309 0.160
0.25 0.321 0.192 0.061
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Table 4.17 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 17 the normalization factor
koY is calculated from the corresponding crack depth L=Lg. The results in 17b

are normalized with respect to kgy = oy (h; o,= N/h.
( Material Pair B, h,/h;=1.)

Table 4.17 a
ky(Lo)/ke?

Lo/h, 0.3 0.6 0.9
a/h
6. 0.961 0.840 0.648
4. 0.944 0.790 0.575
2. 0.904 0.688 0.451
1. 0.843 0.568 0.337
0.5 0.751 0.437 0.241
0.25 0.586 0.312 0.169

Table 4.17 b
ke(Lo)/kot

Lo/hy 0.3 0.6 0.9
a/h
6. 0.657 1.083 1.560
4. 0.645 1.018 1.384
2. 0.618 0.887 1.086
1. 0.576 0.732 0.811
0.5 0.513 ) 0.563 0.580
0.25 0.400 0.402 0.407
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Table 4.18 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 18a the normalization factor
kS is calculated from the corresponding crack depth L=Lg. The results in 18b
are normalized with respect to kg, = ”bJFI_’ ab=6M/h2.

( Material Pair B, hy/h;=1.)

Table 4.18 a
k(L) /KS

Lo/hy 0.3 0.6 0.9

a/h
6 0.960 0.824 0.601
4. 0.942 0.768 0.515
2 0.899 0.653 0.369
1 0.835 0.518 0.234
0.5 0.738 0.368 0.121
0.25 0.601 0.225 0.038

Table 4.18 b
kb(LO)/kOb

Lo/hy 0.3 0.6 0.9

a/h
6. 0.543 0.711 0.780
4. 0.533 0.663 0.668
2 0.509 0.563 0.479
1. 0.472 0.447 0.304
0.5 0.418 0.318 0.157
0.25 0.340 0.194 0.049

157



Table 4.19 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 19a the normalization factor '
kP is calculated from the corresponding crack depth L=L,. The results in 19b
are normalized with respect to kg = oy Jh; oy= N/h.

( Material Pair B, h,/h;=10. )

Table 4.19 a
ke(Lo)/kor

Lo/h, 0.3 0.6 0.9

a/h
6. 0.996 0.988 0.968
4. 0.995 0.984 0.956
2. 0.993 0.973 0.928
1. 0.990 0.957 0.885
0.5 0.984 0.927 0.813
0.25 0.971 0.872 0.691

Table 4.19 b
k(Lo)/kot

Lo/h, 0.3 0.6 0.9

a/h
6. 0.562 0.821 1.049
4. 0.562 0.817 1.037
2. 0.560 0.778 1.006
1. 0.559 0.775 0.960
0.5 ’ 0.555 0.770 0.882
0.25 ' 0.548 0.724 0.749
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Table 4.20 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 20a the normalization factor
kS is calculated from the corresponding crack depth L=Lg. The results in 20b
are normalized with respect to kyp, = UbJ-}_ll_, ab=6M/h2.
( Material Pair B, hy/h;=10. )

Table 4.20 a
kp(Lo)/kgy
Lo/hy 0.3 0.6 0.9
a/h '
6. 0.996 0.992 0.981
4. 0.996 0.989 0.974
2. 0.994 0.981 0.955
1. 0.991 0.969 0.924
0.5 0.986 0.946 : 0.872
0.25 0.975 0.905 0.794
Table 4.20 b
ky(Lo)/kob
Ly/h, 0.3 0.6 0.9
a/h
6. 0.537 0.768 0.956
4. 0.537 0.766 0.949
2. 0.536 0.759 0.930
1. 0.535 0.756 0.900
0.5 0.532 0.756 0.850
0.25 0.526 0.701 0.774
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Table 4.21 Normalized stress intensity factdr at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 21a the normalization factor
k3Y is calculated from the corresponding crack depth L=L,,. The results in 21b
are normalized with respect to kg = oy Jh; oy= N/h.
( Material Pair B, h,/h;=0.1 )

Table 4.21 a
ky(Lo)/koy
Lo/hy 0.3 0.6 0.9
a/h
6. 0.862 0.503 0.137
4, 0.817 . 0.430 0.112
2. 0.722 0.320 0.078
1. 0.609 0.231 0.054
0.5 0.477 0.163 0.037
Table 4.21 b
k¢(Lo)/kot
Lo/hy 0.3 0.6 09
a/h
0.729 1.268 1.474
4. 0.691 1.084 1.205
2. 0.611 0.807 0.839
1. 0.508 0.557 0.581
0.5 0.385 0.386 0.398
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Table 4.22 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate

subjected to bending. In 22a the normalization factor

kf,? is calculated from the corresponding crack depth L=Lgy. The results in 22b

are normalized with respect to kg, = ”b*lhl , o'b=6M/h2.
( Material Pair B, hp/h;=0.1 )

Table 4.22 a

a/h

o

Table 4.22 b

Lo/hy

0.3

0.852
0.802
0.699
0.573
0.428

0.3

0.503
0.473
0.412
0.338
0.252

kp(Lo)/k3y

0.6

0.432
0.345
0.215
0.111
0.033

kp(Lo)/kop
0.6

0.538
0.430
0.268
0.138
0.041
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0.9

0.034
0.007
-0.024
-0.041
-0.043

0.9

0.133
0.027
-0.094
-0.160
-0.168



Table 4.23 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 23 the normalization factor
k¥ is calculated from the corresponding crack depth L=Lg,. The results in 23b
are normalized with respect to ko, = a't‘Ih_1 oy= N/h.
( Material Pair C, hy/h;=1. )

Table 4.23 a
k¢(Lo)/ko?
Lo/h, 0.3 0.6 0.9
a/h
6. 0.972 0.897 0.747
4. 0.960 0.857 0.674
2. 0.931 0.767 0.538
1. 0.887 0.653 0.404
0.5 0.818 0.520 0.281
Table 4.23 b
ky(Lo)/ kot
Lg/h; 0.3 0.6 ' 0.9
a/h
6. 0.688 1.238 2.065
4. 0.680 1.183 1.863
2. 0.459 1.058 1.487
1. 0.433 0.901 1.117
0.5 0.393 0.717 0.777
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Table 4.24 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 24a the normalization factor
ko7 is calculated from the corresponding crack depth L=Lg. The results in 24b
are normalized with respect to kg, = abJTx_, ab:GM/hQ.
( Material Pair C, hy/hy=1. )

Table 4.24 a
kp(Lo)/koy
Lo/hy 0.3 0.6 0.9
a/h
6 0.974 0.900 0.739
4, 0.964 0.861 0.663
2 0.938 0.775 0.523
1 0.899 0.669 0.390
0.5 0.843 0.549 0.273
Table 4.24 b
ky(Lg)/kob
Lo/hy 0.3 0.6 09
a/h 7
6. 0.554 0.796 1.056
4. 0.548 0.762 0.974
2. 0.533 0.686 0.747
1. 0.511 0.592 0.557
0.5 0.479 0.486 0.390
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Table 4.25 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 25a the normalization factor
k7 is calculated from the corresponding crack depth L=Lg. The results in 25b

‘are normalized with respect to kg = oy Jh; oy= N/h.
( Material Pair C, h,/h;=5. )

Table 4.25 a
ke(Lo)/kS?
Lo/h, 0.3 0.6 0.9
a/h |
6. 1.003 0.995 0.979
4. 1.001 0.991 0.968
2. 0.998 0.979 0.940
1. 0.994 0.961 0.900
0.5 0.986 0.932 0.840
0.25 0.972 0.883 0.750
Table 4.25 b
ky(Lo)/kot
Lo/hy 0.3 0.6 0.9
a/h
6. 0.642 0.992 1.412
4. 0.641 0.988 1.397
2. 0.639 0.976 1.356
1. 0.636 0.958 1.299
0.5 0.631 0.929 1.212
0.25 : 0.622 0.880 1.082
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Table 4.26 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 26a the normalization factor
k‘o)f is calculated from the corresponding crack depth L=Lyg. The results in 26b
are normalized with respect to kg, = a’bm, ab=6M/h2.
( Material Pair C, hy/h;=5. )

Table 4.26 a
kp(Lo)/k3¥

Lo/hy 0.3 0.6 0.9

a/h
6 1.003 0.996 0.979
4. 1.002 0.991 0.967
2 0.999 0.978 0.938
1. 0.994 0.960 0.896
0.5 0.986 0.930 : 0.834
0.25 0.972 0.879 0.740

Table 4.26 b
kb(LO)/kOb

Lo/hy 0.3 0.6 0.9

a/h
6. 0.600 0.869 1.156
4. 0.600 0.864 1.142
2. 0.598 0.853 1.108
1. 0.595 0.837 1.058
0.5 0.590 0.811 0.985
0.25 0.582 0.767 0.874
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Table 4.27 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 27a the normalization factor
k27 is calculated from the corresponding crack depth L=L,. The results in 27b
are normalized with respect to kg = oy Jh; 4= N/h.
( Material Pair D, hy/h;=1. )

Table 4.27 a
ky(Lo)/ker
Lo/h, 0.3 0.6 0.9
a/h
6. 0.959 0.856 0.707
4. 0.942 _ 0.804 0.627
2. 0.899 0.693 0.483
1. 0.836 0.563 0.348
0.5 0.747 0.424 0.262
Table 4.27 b
ki(Lo)/kot
Lo/h, 0.3 0.6 09
a/h
0.648 1.032 1.380
0.637 0.969 1.224
0.608 0.835 0.943
. 0.565 0.675 0.679
0.5 0.505 0.511 0.512
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Table 4.28 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 28a the normalization factor
k% is calculated from the corresponding crack depth L=Lg. The results in 28b
are normalized with respect to kg, = abﬁlT, ab=6M/h2.
( Material Pair D, hy/h;=1. )

Table 4.28 a ,
kp(Lo) /Koy
Lo/h, 0.3 0.6 0.9
a/h
6. 0.962 0.863 0.706
a. 0.946 0.813 0.624
2. 0.909 0.709 0.481
1. 0.855 0.591 0.353
0.5 0.782 0.468 0.246
Table 4.28 b
k(L) /kop
Lo/h, 0.3 0.6 ' 0.9
a/h
6. 0.552 0.729 0.812
4. 0.537 0.687 0.717
2. 0.516 0.599 0.553
1. 0.485 0.499 0.406
0.5 0.444 0.395 0.283
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Table 4.20 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 29a the normalization factor
kP is calculated from the corresponding crack depth L=Lg. The results in 29b
are normalized with respect to kg = oy Jh; o= N/h.
( Material Pair D, h,/h;=5. )

Table 4.29 a
ke(Lo) /K3

Lo/hy 0.3 0.6 : 0.9

a/h
6. 0.993 0.981 0.965
4. 0.991 0.974 0.950
2. 0.986 0.954 0.913
1. 0.977 0.926 0.862
0.5 0.944 0.883 0.791
0.25 0.940 0.815 0.689

Table 4.29 b
ke(Lo)/kot

Lgo/hy 0.3 0.6 0.9

a/h
6. 0.605 0.847 1.001
4. 0.604 0.840 0.995
2. 0.601 0.802 0.956
1. 0.596 0.799 0.903
0.5 0.575 0.718 0.828
0.25 0.573 0.703 0.722
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Table 4.30 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 30a the normalization factor
kff is calculated from the corresponding crack depth L=Lg. The results in 30b
are normalized with respect to kg, = abJ_h_l—, ab=6M/h2.
( Material Pair D, hy/h;=5. )

Table 4.30 a
kp(Lo)/koy

Lo/hy 0.3 0.6 0.9
a/h
6 0.993 0.981 0.964
4. 0.991 0.973 0.949
2 0.985 0.954 0.911
1 0.977 0.925 0.858
0.5 0.964 0.882 0.784
0.25 0.939 0.813 0.677

Table 4.30 b
kp(Lo)/kop

Lo/hy 0.3 0.6 0.9
a/h
6 0.571 0.750 0.836
4, 0.569 0.744 0.823
2 0.566 0.729 0.816
1 0.561 0.707 0.744
0.5 0.554 0.674 _ 0.680
0.25 0.539 0.622 0.587
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Table 4.31 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 31a the normalization factor
k37 is calculated from the corresponding crack depth L=Lg. The results in 31b
are normalized with respect to kg = oy Jh; oy= N/h.
( Material Pair D, hy/hy;=0.2 )

Table 4.31 a
ky(Lo)/k3y

Lo/hy 0.3 0.6 0.9

a/h
6. 0.918 0.662 0.278
4. 0.886 0.587 0.226
2. 0.811 0.459 0.160
1. 0.718 0.348 0.114
0.5 0.606 0.256 0.081
0.25 0.470 0.183 0.057

Table 4.31 b
ke(Lo)/kot

Lo/hy 0.3 0.6 ' 0.9

a/h
6. 0.736 1.373 1.885
4. 0.710 1.217 1.532
2. 0.650 0.952 1.108
1. 0.576 0.722 0.773
0.5 0.486 0.531 0.549
0.25 : 0.377 0.379 0.386
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Table 4.32 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 32a the normalization factor
kS is calculated from the corresponding crack depth L=Lg. The results in 32b
are normalized with respect to ko, = ”bJFl_’ ab=6M/h2.

( Material Pair D, hy/h;=0.2 )

Table 4.32 a
k(L) /kEY
Lo/b, 0.3 0.6 0.9
a/h
6. 0.913 0.621 0.195
4. 0.878 0.543 0.136
2. 0.796 0.384 0.061
1. 0.694 0.254 0.013
0.5 0.572 0.147 ' -0.018
0.25 0.430 0.064 -0.033
Table 4.32 b
kp(Lo)/kop
Lo/hy 0.3 0.6 0.9
a/h
6. 0.541 0.712 0.572
4, 0.520 0.622 0.399
2 0.471 0.440 0.179
1. 0.411 0.291 0.038
0.5 0.339 0.169 -0.053
0.25 0.255 0.073 -0.097
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Table 4.33 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 33a the normalization factor
k2P is calculated from the corresponding crack depth L=L,. The results in 33b

are normalized with respect to kgy = oy /h; oy= N/h.
( Material Pair E, hy/h;=1. )

Table 4.33 a
ky(Lg)/koY
Lo/h, 0.3 0.6 0.9
a/h
6. 0.971 0.890 0.734
4. 0.958 . 0.850 0.660
2. 0.927 0.754 0.523
1. 0.880 0.638 0.390
0.5 0.809 0.504 0.270
Table 4.33 b
ke (Lo)/kot
Lo/hy 0.3 0.6 09
a/h
0.683 1.206 1.951
. 0.674 1.152 1.754
2. 0.652 1.022 1.390
1. 0.619 0.865 1.037
0.5 0.569 0.683 0.718
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Table 4.34 Normalized stress intensity factor at the center of a semi-elliptical surface '
crack in a two-layer plate subjected to bending. In 34a the normalization factor
k% is calculated from the cofresponding crack depth L=L,. The results in 34b
are normalized with respect to kg, = a’th—l-, ab=6M/h2.

( Material Pair E, hy/h;=1. )

Table 4.34 a 4
kp(Lo)/koy
Lo/h, 0.3 0.6 0.9
a/h
6. 0.973 0.893 0.725
4. 0.961 0.852 0.647
2. 0.933 0.762 0.506
1. 0.893 0.654 0.374
0.5 0.834 0.533 0.260
Table 4.34 b
ko(Lo)/kop
Lo/hy 0.3 0.6 ' 0.9
a/h
6 0.553 0.788 1.018
4, 0.546 0.752 0.908
2 0.530 0.672 0.710
1. 0.508 0.577 0.525
0.5 0.474 0.470 0.365
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Table 4.35 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 35a the normalization factor
k9 is calculated from the corresponding crack depth L=Lg. The results in 35b
are normalized with respect to kg, = ”tm oy= N/h.
( Material Pair E, hy/h;=5. )

Table 4.35 a
ke (Lo)/key
Lo/hy 0.3 0.6 - - 0.9
a/h
6. 1.003 0.995 0.979
4. 1.001 0.990 0.967
2. 0.998 0.977 0.938
1. 0.993 0.958 0.896
0.5 0.985 0.927 0.836
0.25 0.969 0.876 0.744
Table 4.35 b _
k{(Lo)/kor
Lo/hy 0.3 0.6 0.9
a/h
6. 0.638 0.973 1.355
4. 0.637 0.969 1.338
2. 0.635 0.956 1.298
1. 0.631 0.937 1.240
0.5 0.626 0.907 1.157
0.25 0.616 0.857 1.029

174



Table 4.36 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to bending. In 36a the normalization factor
kS} is calculated from the corresponding crack depth L=Lgy. The results in 36b
are normalized with respect to kg, = ”bm’ ab=6M/h2.
( Material Pair E, hy/hy=5. )

Table 4.36 a
ky(Lo)/kep

Lo/hy 0.3 0.6 0.9

a/h
6. 1.002 0.996 0.979
4. 1.001 0.990 0.966
2. 0.998 0.977 0.936
1. 0.993 0.957 0.892
0.5 0.984 0.925 0.828
0.25 0.969 0.872 0.732

Table 4.36 b
ky(Lo)/kop

Lo/hy 0.3 0.6 0.9

a/h
6. 0.597 0.854 1.113
4. 0.597 0.849 1.098
2. 0.595 0.838 1.064
1. 0.592 0.821 1.014
0.5 0.586 0.793 _ 0.932
0.25 ' 0.577 0.748 0.832
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Table 4.37 Normalized stress intensity factor at the center of a semi-elliptical surface
crack in a two-layer plate subjected to tension. In 37a the normalization factor
k¢ is calculated from the corresponding crack depth L=Lg. The results in 37b

are normalized with respect to koy = oy |h; o,= N/h.
( Material Pair E, h,/h;=0.2 )

Table 4.37 a
ke(Lo)/kor
Lo/h, 0.3 0.6 0.9
a/h '
6. 0.934 0.693 0.280
4. 0.907 0.619 0.228
2. 0.841 0.489 0.159
1. 0.756 0.372 0.111
0.5 0.651 0.270 0.076
0.25 0.523 0.178 0.052
Table 4.37 b
ke(Lo)/kot
Lo/h, 0.3 0.6 09
a/h
6. 0.775 1.578 2.280
4. 0.753 1.410 1.856
2. 0.698 1.114 1.294
1. 0.627 0.847 0.904
0.5 0.540 0.615 0.619
0.25 . 0.214 0.405 0.423
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Table 4.38 Normalized stress intensity factor at the center of a semi-elliptical surface -
crack in a two-layer plate subjected to bending. In 38a the normalization factor
k% is calculated from the corresponding crack depth L=Lg. The results in 38b
are normalized with respect to kqop = abm, ab=6M/h2.

( Material Pair E, h,/h;=0.2 )

Table 4.38 a .
ky(Lo)/ k3
Lo/h, 0.3 0.6 0.9
a/h
6. 0.930 0.652 0.184
4. 0.901 0.566 0.123
2. 0.828 0.413 0.045
1. 0.734 0.274 -0.005
0.5 0.618 0.157 -0.035
0.25 0.476 0.065 -0.049
Table 4.38b
p(Lo) ko
Ly/hy 0.3 0.6 0.9
a/h
6. 0.550 0.762 0.568
4. 0.532 0.661 0.380
2. 0.489 0.482 0.139
1. 0.434 0.320 -0.015
0.5 0.365 0.183 -0.108
0.25 0.281 0.076 -0.151
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Table 4.39 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical (a), or rectangular (b) surface crack in a two-layer plate

subjected to tension. ( Material Pair B, h,/h;=1. )

Semi-elliptical surface crack

a.l a/h=1. kb(y)/koof
Lo/h, 0.3 0.6 0.9

y/a
0. 0.843 0.568 0.337
0.1 0.838 0.566 0.336
0.2 0.827 0.559 0.333
0.3 0.814 0.553 0.328
0.4 0.803 0.547 0.324
0.5 0.793 0.542 0.320
0.6 0.774 0.532 0.314
0.7 0.732 0.512 0.304
0.8 0.667 0.483 0.292
0.9 0.616 0.463 0.284

2.2) a/h=2.

Lo/hy 0.3 0.6 ' 0.9

y/a

0. 0.904 0.688 0.451
0.1 0.899 0.684 0.449
0.2 0.885 0.675 0.443
0.3 0.869 0.664 0.436
0.4 0.854 0.653 0.429
0.5 0.839 0.643 0.421
0.6 0.814 0.625 0.411
0.7 0.762 0.591 0.392
0.8 0.683 0.540 0.365
0.9 0.616 0.498 0.345
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Table 4.39b continued

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b.2) a/h=2.

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

LO/hl

0.3

0.891
0.886
0.875
0.866
0.863
0.862
0.850
0.814
0.752
0.662

0.3

0.944
0.937
0.921
0.910
0.913
0.923
0.923
0.891
0.837
0.786

Rectangular surface crack

kb(Y)/ka
0.6

0.627
0.622
0.610
0.598
0.589
0.581
0.561
0.518
0.453
0.380

0.6

0.752
0.747
0.735
0.724
0.717
0.712
0.695
0.653
0.586
0.502
178.b

0.9

0.376
0.373
0.364
0.355
0.348
0.342
0.329
0.301
0.261
0.222

0.9

0.508
0.504
0.494
0.483
0.475
0.468
0.452
0.416
0.363
0.306



Table 4,40 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical (a), or a rectangular (b) surface crack in a two-layer plate

subjected to bending. ( Material Pair B, hy/h;=1. )

Semi-elliptical surface crack

a.l a/h=1. kb(y)/kfg

Lo/h, 0.3 0.6 0.9

y/a
0. 0.835 0.518 0.234
0.1 0.831 0.516 0.235
0.2 0.821 0.515 0.237
0.3 0.812 0.514 0.243
0.4 0.809 0.521 0.253
0.5 0.808 0.532 0.267
0.6 0.801 0.542 0.283
0.7 0.771 0.544 0.299
0.8 0.717 0.545 0.318
0.9 0.685 0.557 0.351

a.2) a/h=2.

Lo/h, 0.3 0.6 | 0.9

y/a
0. 0.899 0.653 0.369
0.1 0.894 0.650 0.368
0.2 0.883 0.645 0.368
0.3 0.871 0.642 0.371
0.4 0.863 0.644 0.380
0.5 . 0.859 0.650 0.394
0.6 0.845 0.652 0.408
0.7 0.806 0.643 0.415
0.8 0.738 0.616 0.420
0.9 0.689 0.611 0.442
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Table 4.40b continued

Rectangular surface crack

b.1) a/h=1. ky(v)/k5%
Lg/h; 0.3 0.6 0.9
y/a
0. 0.876 0.563 - 0.258
0.1 0.874 0.563 0.257
0.2 0.870 0.562 0.257
0.3 0.863 0.556 0.254
0.4 0.857 0.540 0.241
0.5 0.848 0.515 0.222
0.6 0.831 0.485 0.199
0.7 0.799 0.450 0.179
0.8 0.745 0.398 : 0.151
0.9 0.635 0.289 0.086
b.2) a/h=2.
Lo/hy 0.3 0.6 0.9
y/a ‘

0. 0.933 0.705 0.409
0.1 0.928 0.704 0.410
0.2 0.918 0.704 0.408
0.3 0.911 0.699 0.405
0.4 0.910 0.686 0.391
0.5 0.914 0.664 0.367
0.6 0.909 0.637 0.339
0.7 0.883 0.604 0.312
0.8 0.837 0.550 0.273
0.9 0.767 0.428 0.181
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Table 4.41 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical (a), or rectangular (b) surface crack in a two-layer plate

subjected to tension. ( Material Pair C, hy/h;=1. )

Semi-elliptical surface crack

a.l a/h=1. kb(y)/k::f;>

Lo/h, 0.3 0.6 0.9
y/a
0. - 0.887 0.653 0.404
0.1 0.885 0.652 0.403
0.2 0.881 0.650 0.401
0.3 0.871 0.643 0.396
0.4 0.852 ‘ 0.632 0.388
0.5 0.826 0.614 0.377
0.6 0.792 0.593 0.365
0.7 0.754 0.571 0.353
0.8 0.704 0.542 0.341
0.9 0.603 0.481 0.315

a.2) a/h=2.

Lo/h, 0.3 0.6 ' 0.9
y/a
0. 0.932 0.767 0.538
0.1 0.930 0.765 0.537
0.2 0.924 0.760 0.532
0.3 0.911 0.748 0.522
0.4 0.889 0.729 0.507
0.5 0.857 0.701 0.486
0.6 0.818 0.667 0.463
0.7 0.773 0.629 0.438
0.8 0.714 0.580 0.408
0.9 0.600 0.492 0.354
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Table 4.41b continued

a.l

a/h=1.

Lg/hy

a.2) a/h=2.

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.3

0.930
0.927
0.921
0.915
0.913
0.912
0.904
0.880
0.839
0.757

0.3

0.977
0.968
0.949
0.936
0.942
0.959
0.964
0.933
0.885
0.865

Rectangular surface crack

kb(Y)/k&?
0.6

0.722
0.721
0.717
0.709
0.697
0.680
0.656
0.618
0.558
0.445

0.6

0.833
0.832
0.827
0.820
0.812
0.800
0.781
0.750
0.696
0.591

179.b

0.9

0.459
0.457
0.453
0.446
0.434
0.418
0.396
0.395
0.319
0.245

0.9

0.615
0.613
0.608
0.599
0.587
0.570
0.546
0.511
0.457
0.364



Table' 4.42 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical (a), or a rectangular (b) surface crack in a two-layer plate

subjected to bending. ( Material Pair B, h,/h;=1. )

Semi-elliptical surface crack

a.l a/h=1 kb(y)/kfg

Lo/hy 0.3 0.6 0.9

y/a
0. 0.899 0.669 0.390
0.1 0.899 0.670 0.391
0.2 0.897 0.672 0.395
0.3 0.891 0.672 0.399
0.4 0.879 0.670 0.403
0.5 0.859 0.664 0.407
0.6 0.834 0.657 0.411
0.7 0.806 0.652 0.420
0.8 0.767 0.643 0.431
0.9 0.673 0.597 0.427

22) a/h=2.

Lo/, 0.3 0.6 | 0.9

y/a
0. 0.938 0.775 0.523
0.1 0.937 0.775 0.524
0.2 0.934 0.774 0.526
0.3 0.926 0.770 0.527
0.4 0.911 0.762 0.526
0.5 0.887 0.748 0.522
0.6 0.857 0.731 0.517
0.7 0.823 0.713 0.514
0.8 0.777 0.687 0.510
0.9 0.672 0.615 0.478
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Table 4.42b  continued

Rectangular surface crack

b.1) a/h=1. kb(y)/koog

Lo/h, 0.3 0.6 0.9

y/a
0. 0.947 0.730 0.436
0.1 0.939 0.728 0.434
0.2 0.923 0.722 0.430
0.3 0.911 0.714 0.423
0.4 0.915 0.705 0.413
0.5 0.927 0.693 0.398
0.6 0.928 0.672 0.377
0.7 0.897 0.636 0.348
0.8 0.844 0.579 0.305
0.9 0.798 0.480 0.236

b.2) a/h=2.

Lo/hy 0.3 0.6 0.9

y/a
0. 0.990 0.838 0.592
0.1 0.977 0.835 0.591
0.2 0.947 0.826 0.586
0.3 0.928 0.818 0.577
0.4 0.938 0.812 0.565
0.5 0.969 0.806 0.549
0.6 0.982 0.791 0.526
0.7 0.941 0.757 0.491
0.8 0.878 0.703 0.439
0.9 0.890 0.616 0.351
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Table 4.43 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical (a), or rectangular (b) surface crack in a two-layer plate

subjected to tension. ( Material Pair B, h,/h;=0.1 )

Semi-elliptical surface crack

a.l a/h=1. ky(¥)/kY

Lo/h, 0.3 0.6 0.9
y/a
0. 0.609 0.231 0.055
0.1 0.606 0.231 0.055
0.2 0.600 0.230 0.055
0.3 0.593 0.228 0.055
0.4 0.587 0.226 0.054
0.5 0.582 0.224 0.054
0.6 0.573 0.219 0.052
0.7 0.553 0.213 0.049
0.8 0.524 0.207 0.049
0.9 0.500 0.196 0.048

a.2) a/h=2.

Lo/h, 0.3 0.6 ' 0.9
y/a
0. 0.722 0.321 0.078
0.1 0.718 0.319 0.078
0.2 0.709 0.317 0.078
0.3 0.697 0.314 0.078
0.4 0.688 0.310 0.078
0.5 . 0.678 0.307 0.078
0.6 0.661 0.300 0.078
0.7 0.626 0.289 0.077
0.8 - 0.575 0.275 0.074
0.9 0.529 0.262 0.070
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Table 4.43b continued

Rectangular surface crack

b.1 a/h=1. ky(¥)/kY
Lo/hy 0.3 0.6 0.9
y/a '
0. 0.669 0.257 0.065
0.1 0.664 0.255 ~0.065
0.2 0.653 0.250 0.064
0.3 0.641 0.244 0.063
0.4 0.632 0.239 0.062
0.5 0.622 0.235 0.059
0.6 0.601 0.226 0.057
0.7 0.558 0.207 0.053
0.8 0.492 0.181 0.047
0.9 0.410 0.155 , 0.038
b.2) a/h=2.
Lo/h, 0.3 0.6 0.9
y/a .
0. 0.783 0.362 ©0.092
0.1 0.779 0.359 0.091
0.2 0.768 0.351 0.090
0.3 0.758 0.343 0.088
0.4 0.752 0.337 0.086
0.5 0.746 0.331 0.084
0.6 0.731 0.318 0.089
0.7 0.691 0.292 0.074
0.8 0.626 0.254 0.065
0.9 0.538 0.215 0.053

180.b



Table 4.44 a and b Normalized stress inteﬁsity factor at the crack front for a
semi-elliptical (a), or a rectangular (b) surface crack in a two-layer plate

subjected to bending. ( Material Pair B, h,/h;=0.1 )

Semi-elliptical surface crack

a.l a/h=1. kb(y)/k‘?ﬁ
Lo/h, 0.3 0.6 0.9
y/a
0. 0.573 0.111 -0.040
0.1 0.572 0.112 -0.040
0.2 0.572 0.116 -0.037
0.3 0.570 0.123 -0.032
0.4 0.573 , 0.134 -0.024
0.5 0.575 0.148 -0.014
0.6 0.576 0.167 -0.002
0.7 0.576 0.187 0.012
0.8 0.577 0.214 0.028
0.9 0.577 0.245 0.048
a.2) a/h=2.

Lo/hy 0.3 0.6 ' 0.9
y/a
0. 0.698 0215 -0.024
0.1 0.696 0.216 -0.023
0.2 0.693 0.219 -0.019
0.3 0.692 0.225 -0.012
0.4 0.691 0.237 -0.001
0.5 0.690 0.254 0.012
0.6 0.673 0.272 0.028
0.7 0.654 0.290 0.044
0.8 0.640 0.310 0.061
0.9 0.619 0.338 0.084
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Table 4.44b continued

Rectangular surface crack

b.1) a/h=1. kb(y)/koog
Lo/h; 0.3 0.6 0.9
y/a
0. 0.622 0.123 . -0.045
0.1 0.622 _ 0.123 -0.045
0.2 0.620 0.122 -0.045
0.3 0.613. 0.120 -0.046
0.4 0.599 0.112 -0.046
0.5 0.576 0.099 -0.046
0.6 - 0.546 0.084 -0.045
0.7 0.510 0.071 -0.044
0.8 0.454 0.055 -0.044
0.9 0.343 0.016 -0.042
b.2) a/h=2.
Lo/h, 0.3 0.6 0.9
y/a
0. 0.750 0.241  .0.024
0.1 0.749 0.240 -0.024
0.2 0.748 0.239 -0.024
0.3 0.743 0.236 -0.025
0.4 0.731 0.227 -0.027
0.5 0.713 0.201 -0.031
0.6 0.689 0.187 -0.034
0.7 0.657 0.168 -0.037
0.8 0.603 0.142 -0.039
0.9 0.484 0.079 -0.043
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Table 4.45 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical surface crack in a two-layer plate
subjected to temsion (a), bending (b).
( Material Pair B, h,/h;=10 )

a.l) a/h=1. kb(y)/k%
Lo/hy 0.3 0.6 0.9
y/a
0. 0.989 0.967 0.885
0.1 0.988 0.955 0.884
0.2 0.983 0.950 0.880
0.3 0.971 0.939 0.873
0.4 0.951 0.920 0.859
0.5 0.921 0.894 0.839
0.6 0.883 0.858 0.812
0.7 0.837 0.815 0.777
0.8 0.774 0.755 0.727
0.9 0.652 0.640 0.625
a.2) a/h=2.
Lo/hy 0.3 0.6 ' 0.9
y/a

0. 0.993 0.973 0.928
0.1 0.991 0.972 0.927
0.2 0.986 0.965 0.921
0.3 0.974 0.953 0.910
0.4 0.953 0.933 0.891
0.5 0.923 0.904 0.865
0.6 0.885 0.866 0.830
0.7 0.838 0.819 0.786
0.8 0.775 0.756 0.726
0.9 0.651 0.636 0.614
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Table 4.45b continued

b.1)

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

a/h=1.

LO/hl

b.2) a/h=2.

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ly/hy

0.3

0.991
0.990
0.985
0.975
0.957
0.929
0.894
0.852
0.794
0.675

0.3

0.994
0.993
0.988
0.977
0.959
0.931
0.896
0.853
0.794
0.675

kp(¥)/K3p
0.6

0.969
0.967
0.963
0.954
0.938
0.913
0.882
0.844
0.791
0.681

0.6

0.981
0.980
0.975
0.965
0.947
0.922
0.888
0.848
0.791
0.678

181.b

0.9

0.924
0.923
0.919
0.911
0.898
0.878
0.852
0.819
0.773
0.675

0.9

0.955
0.953
0.948
0.938
0.922
0.898
0.866
0.828
0.775
0.669



Table 4.46 a and b Normalized stress intensity factor at the crack front for a
semi-elliptical surface crack in a two-layer plate
subjected to tension (a), bending (b).
( Material Pair C, hy/h;=5 )

al) a/h=l. K9/
Lo/h, 0.3 0.6 0.9
y/a
0. 0.994 0.961 0.900
0.1 - ©0.989 0.956 0.899
0.2 0.975 0.941 0.884
0.3 0.958 0.922 0.864
0.4 0.940 0.902 0.842
0.5 0.919 0.880 0.817
0.6 0.886 0.846 0.780
0.7 0.829 0.786 0.720
0.8 0.746 0.698 0.635
0.9 0.646 0.611 0.554
a2) a/hz2.
Ly/h, 0.3 0.6 ' 0.9
y/a
0. 0.998 0.979 0.940
0.1 0.993 0.973 0.937
02 0.980 0.958 0.920
0.3 0.962 0.937 0.897
0.4 0.944 0.916 0.871
0.5 . 0.922 0.892 0.842
0.6 0.888 0.855 0.801
0.7 0.830 0.792 0.733
0.8 0.747 0.701 0.640
0.9 0.645 0.609 0.552
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Table 4.46b continued

y/a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b.2) a/h=2,

Lo/hy

0.3

0.994
0.989
0.976
0.961
0.945
0.927
0.898
0.844
0.766
0.670

0.3

0.999
0.994
0.981
0.965
0.949
0.931
0.900
0.846
0.767
0.670

kb(Y)/kS}.;
0.6

0.960
0.956
0.942
0.925
0.910
0.895
0.868
0.815
0.734
0.657

0.6

0.978
0.973
0.959
0.941
0.925
0.907
0.878
0.822
0.738
0.656

180.d

0.9

0.896
0.892
0.882
0.865
0.851
0.835
0.809
0.759
0.682
0.616

0.9

0.938
0.930
0.921
0.901
0.883
0.863
0.831
0.774
0.689
0.615



Figure 2.1 Geometry and the loading of the plate with a through crack.
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Figure 2 2 (b ) Geometry and notations of the two-layer laminated plate.
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Figure 2.3 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 22 a)
( Material Iis fixed as Material A and Material Il is
Material A, Material B, or isotropic materials with
v,= 0.3 and E, = 390., 3.9, 0.39 ( GPA ) respectively)
(ke= o, V3, op =6 M®/h? h; =h, = h/2.)
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Figure 2.4 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 2.2 a)
( Material Iis fixed as Material A and Material II is
Material A, Material B, or isotropic materials with
vy= 0.3 and E, = 390, 3.9, 0.39 ( GPA ) respectively)
(ko=o,¥a, o, =6M>®/h? hy =h, = h/2.)
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Figure 2.5 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 2.2 a )
( both Material I and Material II are isétropic materials
with v, = vy= 0.3 and different E,/E,; ratios )
(ko= oy, N2, op=6M/h% h; =h, =h/2.)
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Figure 2.6 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 2.2 a )
( both Material I and Material I are isotropic materials
with v; = v,= 0.3 and different E,/E,; ratios )
(kg=opva, o, =6M®/h? h; = h, = h/2. )
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Figure 2.7 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 2.2 a)
( both Material I and Material II are isotropic materials
with v, = v,= 0.3 and different E,/E; ratios )
(ko= oy, ¥a, oy = 6 M®/h?, hy/hy = 0.1)
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Figure 2.8 Normalized stress intensity factor in a 3-symmetrically-layered
plate containing a through crack of length 2a. ( see Figure 2.2 a )
( both Material I and Material II are isotropic materials
with v; = vy= 0.3 and different E,/E; ratios )
(ko= o, ¥, o, =6M>/h% h/h, = 10)
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Figure 2.9 Normalized stress intensity factor in a 3-symmetrically-layered
“honeycomb structure® plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

for Material T TT = =

(k0= oy {a, szﬁMoo/h2’h1/h2 =5, EZ/E] =5)
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Figure 2.10 Normalized stress intensity factor in a J-symmetrically-layered
“honeycomb structure” plate containing a through crack of length 2a.
( Material II is isotropic material and being fixed ,
ze Gyz

for -Material I TT = Gy Gy )

(ko= oy, ¥a, o, =6M®/h? hy/h, =5,ah =1)
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Figure 2.11 Normalized stress intensity factor in a 3-symmetrically-layered
“honeycomb structure” plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

Gxe

for Material I TT = Cor — gi’j )

(ko= o, ¥a, oy =6M>/h? h/h, =5,a/h=1)
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Figure 2.12 Normalized stress intensity factor in a 3-symmetrically;layered
“honeycomb structure” plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

for Material 1 TT =

(kg=o,Va, op=6M®/h? E,/E, =10,a/h = 1)
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Figure 2.13 Normalized stress intensity factor in a 3-symmetrically-layered

“honeycomb structure® plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

. G Gy
for Material T TT = 2 = 4
or Materia Gy Gy )

(ko= oy, V3, 0, = 6 M®/h?, TT = 10, a/h = 1)



Eo/E1=5.

Figure 2.14 Normalized stress intensity factor in a two - layer isotropic plate
containing a through crack of length 2a under bending. ( see Figure 2.2 b )
( both Material I and Material Il are isotropic materials
with v} = v,= 0.3 and different E,/E, ratios )
(ky =k( hcy ), ko= op ¥3, 0 = 6 M/h?, h,/h, = 0.1)
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Figure 2.15 Normalized stress intensity factor in a two - layer isotropic plate
containing a through crack of length 2a under bending. ( see Figure 2.2 b))
( both Material I and Material II are isotropic materials
with v; = 0.3 and different v, /v, ratios )
(ky = k( h-cg ), ko= o, ¥3, o = 6 M®/h%, hy/hy = 1)
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Figure 2.16 Normalized stress intensity factor in a two - layer isotropic plate
containing a through crack of length 2a under tension. ( see Figure 2.2 b )
( both Material I and Material I are isotropic materials
with v, = 0.3 and different v, /v, ratios )
(ky = k( becg ), ko= 0, ¥&, 0, = N®/h, hy/h, = 1)
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Figure 2.17 Normalized stress intensity factor in a two - layer orthotropic plate
containing a through crack of length 2a under bending. ( see Figure 2.2 b))
( both Material I and Material II are orthotropic materials
with Material I being Material B and Material II being Material A )
(ky = k( hcy ), ko= oy Na, o, = 6 M /h?)
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Figure 2.18 Normalized stress intensity factor in a two - layer orthotropic plate
containing a through crack of length 2a under tension. ( see Figure 2.2 b )
( both Material I and Material II are ofthotropic materials
with Material I being Material C and Material II being Material D )
(ky =k( hey ), kg=0,¥a, o, = N /h)
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Figure 2.19 Normalized stress intensity factor in a two - layer orthotropic plate
containing a through crack of length 2a under bending. ( see Figure 2.2 b )
( both Material I and Material II grrg’orifhptropic materials
with Material I being Material C and Material II being Material D )
(ky, = k( hcy ), ko= o, V&, o = 6 M®/h? )
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Figure 2.20 The effect of individual material constants on the normalized
stress intensity factor in a two - layer plate containing a
through crack of length 2a under bending moment M. ( see Figure 2.2 b )
( Material I is isotropic materials and it is fixed; Material II
is assumed to be “isotropic” expect one constant varies )
(ky = k(hey ), kg=op ¥ @, op = 6 MO /h? )
(a/h =1, hy/hy =1)
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Figure 2.21 The effect of individual material constants on the normalized
stress intensity factor in a two - layer plate containing a
through crack of length 2a under bending moment M. ( see Figure 2.2 b))
( Material Iis Material D, an orthotropic material, Material II is
assumed to be “isotropic®, with E = 40.41 (GPA), expect
one constant varies)
(k, = k( hcg ), ko= op ¥ @, o, = 6 M®/h?)
(a/h =1, hy/hy = 1)
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Figure 2.22 The effect of individual material constants on the normalized
stress intensity factor in a two - layer plate containing a
through crack of length 2a under bending moment M. ( see Figure 2.2 b))
( Material 1is Material A, an orthotropic material, Material II is
assumed to be “isotropic®, with E = 39.0 (GPA), expect
one constant varies)
(ky = k( h-cg ), ko= o, ¥3, 0 = 6 M®/h?)
(a/h =1, hy/h; = 1)
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zZ/h
Figure 2.23 Normalized stress intensity factor distribution in a two - layer orthotropic
plate containing a through crack of length 2a under tension. ( see Figure 2.2 b )
( both Material I and Material II are orthotropic materials
with Material I being Material A and Material II being Material B )
(z=z+ ¢y, kyg=0,Va, o, = N%/h )
(a/h =1, hy/hy = 1)
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Figure 2.24 Normalized stress intensity factor distribution in a two - layer orthotropic
plate containing a through crack of length 2a under bending. ( see Figure 2.2 b))
( both Material I and Material II are orﬁxotropic materials
with Material I being Material A and Material II being Material B )
(Z=2+c¢cy,kg= o, Va, op = 6 MP/h?)
(a/h =1, hy/h; =1)
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Figure 2.25 Normalized stress intensity factor distribution in a two - layer orthotropic

plate containing a through crack of length 2a under tension. ( see Figure 2.2 b )

( both Material T and Material II are orthotropic materials
with Material I being Material A and Material II being Material B )

(Z=z2+4¢y,kg=0,¥a, o, = N°/h )
(a/h =1, hy/h; =10)

207



Z/h

Figure 2.26 Normalized stress intensity factor distribution in a two - layer orthotropic
plate containing a through crack of length 2a under bending. ( see Figure 2.2 b )
( both Material I and Material II are orthotropic materials
with Material I being Material A and Material II being Material B )
(Z=z+cy,kg=0op,¥a, op =6 MP/h?)
(a/h =1, hy/h; =10)
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Figure 2.27 Normalized stress intensity factor distribution in a 3-unsymmetrically
-layered plate containing a through crack under tension. ( see Figure 2.2 c )
( Materials I and III are isotropic, with »;= w3 = 0.3,
and E;/ E, = 3.0, E5/ E; = 10. ;
Material II is “as if” isotropic, with E, and v,= 0.3,
and Gy, = Gy, = 3 Gyy )
(T=z24c, k=0, VT, o,= NO/h )
(a/h = 0.5, hg/h, = 0.2, h,/hy = 0.2)
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Figure 2.28 Normalized stress intensity factor distribution in a 3-unsymmetrically
-layered plate containing a through crack under bending. ( see Figure 2.2 ¢ )
( Materials I and III are isotropic, with vi= vz = 0.3,
and E;/ E, = 3.0, E;/ E, = 10. ;
Material II is “as if” isotropic, with E, and ve= 0.3,
and Gy = Gyp = 3 Gyy )
(Z=z+ ¢y ,kg= o, va, op = 6 M®/h?)
(a/h = 0.5, hy/h, = 0.2, hy/h, =0.2)
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Figure 2.29 Normalized stress intensity factor distribution in a 3-unsymmetrically
-layered plate containing a through crack under tension. ( see Figure 2.2 ¢ )
( Materials I and IIl are isotropic, with »;= 0.5 and v3; = 0.2,
and E;/ E, = 3.0, E3/ E; = 10. ;
Material II is “as if” isotropic, with E, and wvy,= 0.,
and Gy, = Gy; = 3 Gyy )
(z2=2+¢y,ky=0,va, o, = N®/h )
(a/h =05, hy/h, = 0.2, h;/h, =02)
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Figure 2.30 Normalized stress intensity factor distribution in a 3-unsymmetrically
-layered plate containing a through crack under bending. ( see Figure 22¢)
( Materials I and IIl are isotropic, with »,= 0.5 and vy = 0.2,
and E,/ E, = 3.0, E;/ E, = 10. ;
Material II is “as if” isotropic, with E, and ve= 0.,
and Gy; = Gy; = 3 Gyy )
(Z=z2+c¢y,ky=0,Va, o, =6M®/n?)
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Figure 3.1 Geometry and notation of the crack problem.
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Figure 3.2 Geometry and notation of the corresponding symmetric ¢

rack problem.
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Figure 3.3 Stress intensity factors in two-orthotropic bonded layers containing an

embedded crack under constant pressure P1- (kozplﬁ )
( hy=h,, c=b+Ta, lzb‘{#:hl/i , see Figure 3.1)
(for Pair A: p,"/u,*=1.149, £=0.481 )
( for Pair B: p,*/u,*=0.871, $=0.520 )
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Figure 3.4 Stress intensity factors in two-orthotropic bonded layers with a pressured

edge crack for different ratio of puy™/u™. (kg :plsj b, hy=h, =h/2. )
( Material T is material 1 and u;*=12.078 )
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Figure 3.5 Stress intensity factors in two-isotropic bonded layers with a pressured
edge crack for different ratio of E,/E,. ( vy=v,=0.3 )
( k0=p1 «IT, hlzh2 =h/2. )
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Figure 3.6 The effect of thickness ratio on the stress intensity factor in two-orthotropic

bonded layers with a pressured edge crack. ( Material Pair B, #=0.520 )
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Figure 3.7 Stress intensity factor in two-orthotropic bonded layers containing an edge

crack and subjected to uniform bending away from the crack region.

(kg = p,¥ b, Eq. 3.116 )
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Figure 4.1 Geometry and Loading of the layered plate with a part-through

surface crack.
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finite element solution [21], the classical plate theory and the Reissner
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Figure 4.7 Notation for the related plane strain problem.
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Figure 4.8 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in an isotropic plate subjected to tension.

The normalization factor ko= k37 is the corresponding value for an edge-cracked strip
under plane strain conditions with the same crack depth L=L,.

( Material Pair I, h;=h,=h/2.)
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Figure 4.9 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in an isotropic plate subjected to bending.

The normalization factor ko= k% is the corresponding value for an edge-cracked strip
under plane strain conditions with the same crack depth L=L.

( Material Pair I, h;=h,=h/2.)
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Figure 4.10 Normalized stress intensity factor at the maximum penetration point
of a semi-elliptic surface crack in an isotropic plate subjected to tension.

( ko= ot h;, o¢=N/h, Material Pair I, h;=h,=h/2.)
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Figure 4.11 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a plate subjected to bending.

k.= oy h,, 6, =6M/h? | Material Pair I, h,=h, =h/2.
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Figure 4.12 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a two-layer plate subject to tension. The

normalization factor ko= k3t is the corresponding value for an edge-cracked strip

under plane strain conditions with the same crack depth L=L,.

( Material Pair B, h;=h, =h/2. )
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Figure 4.13 Normalized stress intensity factor at the maximum penetration point
of a semi-elliptic surface crack in a two-layer plate subject to bending. The
normalization factor kozk%cbis the corresponding value for an edge-cracked strip
under plane strain conditions with the same crack depth L=Lj.

( Material Pair B, h;=h, =h/2. )
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Figure 4.14 Normalized stress intensity factor at the maximum penetration point
of a semi-elliptic surface crack in a two-layer plate subjected to tension.

(ko= "nlh—l’ o,=N/h, Material Pair B, h;=h, =h/2. )



Figure 4.15 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a plate subjected to bending.

k.= o0y Ly, 0, =6M/h? , Material Pair B, h;=h, =h/2.
0 b*™0 b 1 2
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Figure 4.16 Normalized stress intensity factor at the maximum penetration point
of a semi-elliptic surface crack in a two-layer plate subjected to tension.

( ko= o, Jh;, o,=N/h, Material Pair B, h,/h;=10. )
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Figure 4.17 Comparison of normalized stress intensity factor at the maximum
penetration point of a semi-elliptic surface crack in a two-layer plate subjected

to tension for Material Pair I and Material Pair B.

(ko= atJh—l, o,=N/h, h;=h, =h/2. )
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Appendix |

Expressions T and A

A. The general Hookes’ law for an orthotropic plate can be expressed as

follows:

€x = Ex Ty Ex Uy' sz

= ¢33 0x + €12 0y + €33 0z,

cz-gyfxfa'-i—ltf- c
YTTEy T Ry YT OEy 7

=Cy1 0x + Cyp Oy + Cp3 0z,

= €33 0x + C33 0y + C33 0z,

Yyz = C44 Oyzy Yzx = Cgg O2x» Txy = Cee Txy-
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B. When a crack is located in the position as shown in Fig. 2.1 it can be

shown that
o _ 1, 411dyp 172 dyy (172 2dyp +dgg 172
po=a5 (—g = ) [(—d22 ) +—————2d22 175,
where
dy; = ¢115 dyy = €225
dyp = 12 dge = Ce6°

for general plane stress ,

2
Cy1 €33 - €13

d{; =
11 a3 J
2
d.. = S22 %33 "~ ‘23
22 C33 ’
d.. = S12 ©33 - ©13%23
12 C33
dee = C66 >

for plane strain.

241



C. When a crack is located in the position as shown in Fig. 4.1(b) it can be

shown that

A= ( €11 €33 )1/2 [( €11 ) /2 2e;3 + ess ] 1/2’

€
2 33 2 ez,
where
2
e, . = —11 C22 ~ ©12
11 <o )
2
enn — 33 €22 ~ €23
33 C22 >
6., = —13 €22 ~ €12C32
13 7 55 ’

€55 = Cg5

for plane strain.
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Appendix I
Expressions Used in Subsections 3.2 and 3.3

. See ( 3.8) and ( 3.43 ) for expressions A, (i =1, 14 )s

and

A 1s = A3 Ayas Ao = A4 M3 -

. See (3.2),(3.9),(3.11) and ( 3.14 ) for expressions B; (i=18).

. Expressions p; (i=18 ):

p1 = B, P2 = Bg> p3 = As, Pa = Aes

Ps = Ag, Pe = M0 P7= A1 Pg = Az -

. Expressions B, (i=1, 11 ):

B; = Aa/2, By = A13/2, By = - 4 fo Mas
B, = -+ B0 A Be=-—L1 A A, Bg=-—sL— Ag A
4 — 2 10 *13» 5 2ﬂ11 7 14, -6 2ﬁ12 8 "13,

1 —
By = Qﬂlu M2 M3 Bg =- 55— A2 A1z, Bg = A1q 43,

Bio = Ash13 By =-
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